

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in **DISCRETE MATHEMATICS**

[Electronic Notes in Discrete Mathematics 64 \(2018\) 145–154](https://doi.org/10.1016/j.endm.2018.01.016) www.elsevier.com/locate/endm

Formulation and algorithms for the robust maximal covering location problem

Amadeu A. Coco^{a,b,2}, Andréa Cynthia Santos ^{b,4}, Thiago F. Noronha ^a,³

^a *DCC, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil* ^b *ICD-LOSI, Université de Technologie de Troyes, Troyes, France.*

Abstract

Let N be the line-set and M be the column-set of a matrix $\{a_{ij}\}\$, such that $a_{ij}=1$ if line $i \in N$ is covered by column $j \in M$, or $a_{ij} = 0$ otherwise. Besides, let $b_j \ge 0$ be the benefit associated with a column $j \in M$. Given a constant $T < |M|$, the NP-Hard Maximal Covering Location Problem (MCLP) consists in finding a subset $X \subseteq M$ with the maximum sum of benefits, such that $|X| \leq T$ and every line in N is covered by at least one column in X . In this study, we investigate the min-max regret Maximal Covering Location Problem, a robust counterpart of MCLP, where the benefit of each column is uncertain and modeled as an interval data. The objective is to find a robust solution that minimizes the maximal regret over all possible combinations of values for the columns benefit. This problem has applications in disaster relief. We propose a MILP formulation, an exact and 2-approximation algorithms, and test them using classical instances from the literature.

Keywords: Robust optimization, min-max regret, uncertain data, heuristics.

- 3 Email: $tfn@dcc.ufmg.br$
- 4 Email: andrea.duhamel@utt.fr

1571-0653/© 2018 Elsevier B.V. All rights reserved. <https://doi.org/10.1016/j.endm.2018.01.016>

 1 This work was partially supported by CNPq, CAPES, and FAPEMIG

 2 Email: amadeuac@dcc.ufmg.br

1 Introduction

Robust optimization is an approach to deal with data uncertainty where the variability of the data is represented by deterministic values $[2,11,14]$. In this work, we focus on robust optimization approaches where uncertain parameters are modeled as an interval of possible values. We refer to the book [\[14\]](#page--1-0) and the survey [\[2\]](#page--1-0) for other robust optimization approaches. Many robust counterparts of classical optimization problems have been studied in the literature, such as the Robust Shortest Path Problem [\[7,10\]](#page--1-0), the Robust Minimum Spanning Tree Problem [\[19\]](#page--1-0) and the Robust Assignment Problem [\[17\]](#page--1-0). These problems are NP-Hard, despite the fact that their classical counterparts are solved in polynomial time. Recently, significant attention has been given to the robust counterpart of NP-Hard problems, such as the Robust Traveling Salesman Problem [\[16\]](#page--1-0), the Robust Set Covering Problem [\[18\]](#page--1-0), the Robust Knapsack Problem [\[9\]](#page--1-0) and the Robust Restricted Shortest Path Problem [\[3\]](#page--1-0).

We deal with a generalization of the Maximal Covering Location Problem (MCLP), which was introduced in [\[6\]](#page--1-0). Let $\{a_{ij}\}\$ be a matrix with a set N of lines and a set M of columns, where each column $j \in M$ is associated with a benefit $b_j \geq 0$. Given a constant $T < |M|$, MCLP consists in finding a subset $X \subseteq M$ with the maximum benefit sum, such that $|X| \leq T$ and every line in N is covered by at least one column in X. Practical applications of MCLP are described in [\[15\]](#page--1-0). This problem is NP-hard, and exact and approximation algorithms were proposed in [\[1,6\]](#page--1-0).

In this study, we introduce the min-max regret Maximal Covering Location Problem (MMR-MCLP), a robust counterpart of MCLP, where the benefit of each column is uncertain and modeled as an interval of possible values. Let N, M, $\{a_{ij}\}\$ and T be as defined above, and $[l_j, u_j]\$ be an interval with the minimum and the maximum benefit expected for column $j \in M$. We define a scenario $s \in S$ as an assignment of a single value $b_j^s \in [l_j, u_j]$ for each column $j \in M$, where S is the set of all possible values for the columns benefit. As MCLP, MMR-MCLP consists in finding $X \subseteq M$, such that $|X| \leq T$ and every line in N is covered by at least one column in X , and one looks for a robust solution that minimizes the maximal regret over all scenarios.

Let S be the set of scenarios, and Γ be the set of feasible solutions. Let also $\psi^s(X) = \sum_{j \in X} b_j^s$ be the benefit of the solution $X \in \Gamma$ for the scenario $s \in S$, where b_j^s is the benefit of column $j \in M$ in s. The regret of a solution $X \in \Gamma$ for a scenario $s \in S$ is defined as the difference between $y^{(s)}(X^s)$ and $X \in \Gamma$ for a scenario $s \in S$ is defined as the difference between $\psi^s(X^s)$ and $\psi^{s}(X)$, where X^{s} is the optimal solution for the scenario s, i.e. the regret of using X instead of X^s if scenario s occurs. MMR-MCLP aims at finding the Download English Version:

<https://daneshyari.com/en/article/8903394>

Download Persian Version:

<https://daneshyari.com/article/8903394>

[Daneshyari.com](https://daneshyari.com)