



Available online at www.sciencedirect.com

**ScienceDirect** 

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 63 (2017) 69-76

www.elsevier.com/locate/endm

## Reduced power graph of a group

R. Rajkumar<sup>1</sup> and T. Anitha<sup>2,3</sup>

Department of Mathematics The Gandhigram Rural Institute – Deemed University Gandhigram – 624 302, Tamil Nadu, India.

## Abstract

Let S be a semigroup. We define the directed reduced power graph of S, denoted by  $\mathscr{P}(S)$ , is a digraph with vertex set S, and for  $u, v \in S$ , there is an arc from u to v if and only if  $u \neq v$  and  $\langle v \rangle \subset \langle u \rangle$ . The (undirected) reduced power graph of S, denoted by  $\mathscr{P}(S)$ , is the underlying graph of  $\mathscr{P}(S)$ . This means that the set of vertices of  $\mathscr{P}(S)$  is equal to S and two vertices u and v are adjacent if and only if  $u \neq v$  and  $\langle v \rangle \subset \langle u \rangle$  or  $\langle u \rangle \subset \langle v \rangle$ . In this paper, we study some interplay between the algebraic properties of a group and the graph theoretic properties of its (directed and undirected) reduced power graphs. Also we establish some relationship between the reduced power graphs and power graphs of groups.

Keywords: Group, Reduced power graph, Power graph.

<sup>&</sup>lt;sup>1</sup> Email: rrajmaths@yahoo.co.in

<sup>&</sup>lt;sup>2</sup> Email: tanitha.maths@gmail.com

<sup>&</sup>lt;sup>3</sup> This research work of the second author is supported by Ministry of Social Justice & Empowerment and Ministry of Tribal Affairs, India in the form of Rajiv Gandhi National Fellowship.

## 1 Introduction

The study of the properties of algebraic structures by the graph theoretic tools has been a main approach of algebraic graph theory. In recent years, the power graphs associated with groups and semigroups have been investigated by several researchers.

In [5], Kelarev and Quinn introduced and studied the directed power graph of a semigroup. The directed power graph of a semigroup S, denoted by  $\overrightarrow{\mathcal{P}}(S)$ , is a digraph with vertex set S, and for  $u, v \in S$ , there is an arc from u to v if and only if  $u \neq v$  and  $v = u^n$ , for some positive integer n; which is equivalent to say  $u \neq v$  and  $\langle v \rangle \subseteq \langle u \rangle$ . Following this, in [3], Chakrabarty et al. defined the undirected power graph of S, denoted by  $\mathcal{P}(S)$ , which is an undirected graph whose vertex set is S, and two vertices u and v are adjacent if and only if  $u \neq v$  and  $u^n = v$  or  $v^n = u$  for some positive integer n; which is equivalent to say  $u \neq v$  and  $\langle v \rangle \subseteq \langle u \rangle$  or  $\langle u \rangle \subseteq \langle v \rangle$ . Given a group G, the subgraph of  $\overrightarrow{\mathcal{P}}(G)$  (resp.  $\mathcal{P}(G)$ ) induced on  $G \setminus \{e\}$  is denoted by  $\overrightarrow{\mathcal{P}}^*(G)$  (resp.  $\mathcal{P}^*(G)$ ), where e denotes the identity element of G. We refer the reader to the survey [4] for further results and open problems on the (directed and undirected) power graphs of groups and semigroups.

In this paper, we define the following graphs: Let S be a semigroup. The directed reduced power graph of S, denoted by  $\overrightarrow{\mathscr{P}}(S)$ , is a digraph with vertex set S, and for  $u, v \in S$ , there is an arc from u to v if and only if  $u \neq v, v = u^n$  for some positive integer n and  $\langle v \rangle \neq \langle u \rangle$ ; which is equivalent to say  $u \neq v$  and  $\langle v \rangle \subset \langle u \rangle$ . The (undirected) reduced power graph of S, denoted by  $\mathscr{P}(S)$ , is the underlying graph of  $\overrightarrow{\mathscr{P}}(S)$ . This means that the set of vertices of  $\mathscr{P}(S)$  is equal to S and two vertices u and v are adjacent if and only if  $u \neq v, u^n = v$  and  $\langle v \rangle \neq \langle u \rangle$  or  $v^n = u$  and  $\langle v \rangle \neq \langle u \rangle$  for some positive integer n; which is equivalent to say  $u \neq v$  and  $\langle v \rangle \neq \langle u \rangle$  for some positive integer n; which is equivalent to say  $u \neq v$  and  $\langle v \rangle \subset \langle u \rangle$  or  $\langle u \rangle \subset \langle v \rangle$ . Given a group G, we denote the subgraph of  $\overrightarrow{\mathscr{P}}(G)$  (resp.  $\mathscr{P}(G)$ ) induced on  $G \setminus \{e\}$  by  $\overrightarrow{\mathscr{P}}^*(G)$  (resp.  $\mathscr{P}^*(G)$ ), where e denotes the identity element of G.

Clearly  $\overrightarrow{\mathscr{P}}(G)$  is a spanning subdigraph of  $\overrightarrow{\mathcal{P}}(G)$ , and  $\mathscr{P}(G)$  is a spanning subgraph of  $\mathcal{P}(G)$ .

The structure of  $\mathcal{P}(\mathbb{Z}_{10})$ ,  $\mathscr{P}(\mathbb{Z}_{10})$  and  $\mathscr{P}^*(\mathbb{Z}_{10})$  are described in Figures 1(a), 1(b) and 1(c), respectively.

We use the standard notations and terminologies of graph theory following [1]. In a simple graph G, the degree of a vertex v in G is denoted by  $deg_G(v)$ , and gr(G) denote the girth of G.  $K_n$  denote the complete graph on n vertices.  $P_n$  and  $C_n$  denotes the path and the cycle of length n, respecDownload English Version:

https://daneshyari.com/en/article/8903428

Download Persian Version:

https://daneshyari.com/article/8903428

Daneshyari.com