Available online at www.sciencedirect.com

H H Electronic Notes in
CrossMark SC|enceDlreCt DISCRETE

MATHEMATICS

ELSEVIER

Electronic Notes in Discrete Mathematics 63 (2017) 125-135 www.elsevier.com/locate/endm

Utilization of OpenCL for Large Graph
Problems on Graphics Processing Unit

Vinod Kumar Mishra! Pankaj Singh Sammal?

Department of Computer Science and Engineering
Bipin Tripathi Kumaon Institute of Technology
Dwarahat, Almora, Uttarakhand, India

Abstract

During recent years graphics processing unit (GPU) has become an inexpensive
high-performance parallel computing units and general purpose computation on
graphics processing unit (GPGPU) become an alternative of conventional CPU
computation, which provide massive parallel computation capability to a normal
computer over a system which uses only CPU. This paper investigates the per-
formance of the algorithm for the solution of single source shortest path (SSSP)
problem, all pair shortest path (APSP) problem and graph coloring problem for
large graph on GPU regardless of a specific vendor. The application programming
interface (API) used for programming in graphic processing unit is open compute
language (OpenCL), it is a specification for heterogeneous computing. The perfor-
mance of solutions on GPU is compared with the solution on CPU in term of their
execution time. The result indicates the significant improvement in the performance
of the solutions on GPU over solutions on CPU.

Keywords: Graphics processing unit (GPU); OpenCL; Single source shortest
path; All pair shortest path; Graph coloring.

! Email: vkmishra2005@gmail.com
2 Email: pankajsammal29@gmail.com

https://doi.org/10.1016/j.endm.2017.11.007
1571-0653/© 2017 Elsevier B.V. All rights reserved.


http://www.elsevier.com/locate/endm
https://doi.org/10.1016/j.endm.2017.11.007
https://doi.org/10.1016/j.endm.2017.11.007
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2017.11.007&domain=pdf

126 V.K. Mishra, P.S. Sammal / Electronic Notes in Discrete Mathematics 63 (2017) 125-135

1 Introduction

Graph representation is common for representing many applications using
graphs in various domains including scientific and engineering domain. Ba-
sic graph operations such as breath-first search, depth-first search, shortest
path etc. are used frequently in these domains. Larger problems need to be
mapped over a very large graph consisting of millions of vertices. For example,
chip layout, data mining and network analysis representation can consist of a
graph with millions of vertices. There are many more applications of graph
in the field of physics, chemistry, communication science, computer science,
and apart from these areas, many practical problems can also be solved with
the help of the graph theoretic algorithm. Graphs can have millions of nodes
depending on their uses, which can be hard to calculate using normal methods
over CPU. There is a need to optimize the solutions of these graph problems
so that they can perform better and execute faster. Basic algorithms are avail-
able to solve these problems but these are impractical for use over very large
graph consisting of millions of vertices. Parallel version of these algorithms can
be used to solve these problems in a practical time but the hardware cost of
parallel system is too high. GPU has become a cost-effective platform for par-
allel computation and can be used to solve many general problems including
in the areas of image processing, signal processing, computer vision, dynamic
programming etc. Initially GPUs were optimized for graphic processing only
and had a very restricted programming model but this all changed in 2006
when GPUs with Shader Model 4.0 was launched, these GPU had a unified
architecture for all processors which allowed them to be used in more flexi-
ble ways than its predecessors. Nvidia launched its Compute Unified Device
Architecture (CUDA) to allow programmers access to underlying parallel pro-
cessor. AMD also launched its own language of its own GPUs known as AMD
Steam. Both CUDA and AMD Steam are incompatible with each other and
have to be programmed in their proprietary language. There exists an open
source alternative to these proprietary languages in form of Open Compute
Language (OpenCL). OpenCL provides an open computing API providing
GPU and other co-processors to work in tandem with the CPU. The major
advantage of OpenCL for GPGPU computation is substantial acceleration in
parallel processing. OpenCL takes advantage of all supported resources such
as multi-core CPUs and GPUs and other OpenCL compatible devices and
divide the workload across all devices. OpenCL also support cross vendor
software portability as there is a low lever layer which separates the hard-
ware and upper software layer. Execution time of basic algorithm to solve



Download English Version:

https://daneshyari.com/en/article/8903435

Download Persian Version:

https://daneshyari.com/article/8903435

Daneshyari.com


https://daneshyari.com/en/article/8903435
https://daneshyari.com/article/8903435
https://daneshyari.com/

