

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 63 (2017) 317–322 www.elsevier.com/locate/endm

Distance Antimagic Labeling of the Ladder Graph

A. K. Handa¹ Aloysius Godinho² T. Singh³

Department of Mathematics BITS Pilani K K Birla Goa Campus Goa, India.

Abstract

Let G be a graph of order n. Let $f: V(G) \longrightarrow \{1, 2, ..., n\}$ be a bijection. The weight $w_f(v)$ of a vertex with respect to f is defined by $w_f(v) = \sum_{x \in N(v)} f(x)$. The labeling f is said to be distance antimagic if $w_f(u) \neq w_f(v)$ for every pair of vertices $u, v \in V(G)$. If the graph G admits such a labeling then G is said to be a distance antimagic graph. In this paper we investigate the existence of distance antimagic labeling in the ladder graph $L_n \cong P_2 \Box P_n$.

 $Keywords: \$ Distance antimagic graphs, antimagic labeling, arbitrarily distance antimagic.

2010 Mathematics Subject Classification: 05C 78.

1 Introduction

By a graph G = (V, E), we mean a finite undirected graph without loops, multiple edges or isolated vertices. For graph theoretic terminology we refer

https://doi.org/10.1016/j.endm.2017.11.028 1571-0653/© 2017 Elsevier B.V. All rights reserved.

¹ Email: p2013100@goa.bits-pilani.ac.in

² Email: p2014001@goa.bits-pilani.ac.in

³ Email: tksingh@goa.bits-pilani.ac.in

to West [7].

Most of the graph labeling methods trace their origin to the concept of β -valuation introduced by Rosa [6]. For a general overview of graph labeling we refer to the dynamic survey by Gallian [2].

Let G be a graph of order n. Let $f: V(G) \longrightarrow \{1, 2, ..., n\}$ be a bijection. The weight $w_f(v)$ of a vertex v is defined by $w_f(v) = \sum_{x \in N(v)} f(x)$ where N(v) is the open neighbourhood of the vertex v. The labeling f is said to be distance antimagic if $w_f(u) \neq w_f(v)$ for every pair of vertices $u, v \in V(G)$. If the graph G admits such a labeling, then G is said to be a distance antimagic graph. Many classes of graphs are known to be distance antimagic. For details one may refer to Gallian [2] and Arumugam *et al.* [1]. In [5] Kamatchi and Arumugam posed the following problem:

Problem 1.1 If G is a distance antimagic graph, is it true that $G + K_1$ and $G + K_2$ are distance antimagic?

In [3] Handa *et al.* solved the problem in the affirmative. They introduced the concept of arbitrarily distance antimagic labeling as a tool to study distance antimagic labeling of join of two graphs.

Definition 1.2 A graph G of order n is said to be arbitrarily distance antimagic if there exists a bijection $f: V \longrightarrow \{1, 2, ..., n\}$ such that $w_{f_k}(u) \neq w_{f_k}(v)$ for any two distinct vertices u and v and for any $k \geq 0$. The labeling f with this property is called an arbitrarily distance antimagic labeling of G.

The following results are proved in [3].

Proposition 1.3 [3] Any r-regular distance antimagic graph G is arbitrarily distance antimagic.

Theorem 1.4 [3] Let f be a distance antimagic labeling of a graph G of order n. If $w_f(u) < w_f(v)$ whenever deg(u) < deg(v), then G is arbitrarily distance antimagic.

Proposition 1.5 [3] Let G_1 and G_2 be two graphs of order n_1 and n_2 with arbitrarily distance antimagic labelings f_1 and f_2 respectively, and let $n_1 \leq n_2$. Let $x \in V(G_1)$ be the vertex with lowest weight under f_1 and $y \in V(G_2)$ be the vertex with highest weight under f_2 . If

$$w_{f_1}(x) + \sum_{i=1}^{n_2} (n_1 + i) > w_{f_2}(y) + \Delta(G_2)n_1 + \sum_{i=1}^{n_1} i$$
(1)

then $G_1 + G_2$ is distance antimagic.

Download English Version:

https://daneshyari.com/en/article/8903456

Download Persian Version:

https://daneshyari.com/article/8903456

Daneshyari.com