

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE **MATHEMATICS**

Electronic Notes in Discrete Mathematics 63 (2017) 399-406 www.elsevier.com/locate/endm

Adjacency Matrix of a Semigraph

Gaidhani Y.S. 1,2

Department of Mathematics M.E.S. Abasaheb Garware College Pune, India

Deshpande C.M.³

Department of Mathematics College of Engineering Pune, India

Athawale B P 4

Department of Mathematics College of Engineering Pune, India

Abstract

Semigraph was defined by Sampathkumar as a generalization of a graph. In this paper the adjacency matrix which represents semigraph uniquely and a characterization of such a matrix is obtained. An algorithm to construct the semigraph from a given square matrix, if semigraphical is given. Some properties of adjacency matrix of semigraph are studied. A sufficient condition for eigen values to be real is also obtained.

Keywords: Semigraph, adjacency matrix of semigraph, semigraphical matrix, eigen values of semigraph.

1 Introduction

Semigraph was introduced by Sampathakumar[4] as a generalization of graph.

Definition 1.1 Semigraph is an ordered pair of two sets V and X, where V is a non-empty set whose elements are called vertices of G and X is a set of n-tuples of distinct vertices, called edges of G, for various n (n at least 2) satisfying the following conditions:

- (i) (SG1) Any two edges have at most one vertex in common.
- (ii) (SG2) Two edges (u_1, u_2, \dots, u_n) and (v_1, v_2, \dots, v_m) are considered to be equal if
 - (a) m = n and
 - (b) either $u_i = v_i$ for $i = 1, 2, \dots, n$ or $u_i = v_{n+1-i}$, for $i = 1, 2, \dots, n$.

Thus the edge (u_1, u_2, \dots, u_m) is same as $(u_m, u_{m-1}, \dots, u_1)$.

Example 1.2 Let G = (V, X) be a semigraph where $V = \{v_1, v_2, \dots, v_9\}$ and $X = \{(v_1, v_2, v_3, v_4), (v_4, v_5), (v_1, v_6, v_5), (v_4, v_6, v_7), (v_5, v_7), (v_2, v_6), (v_5, v_9)\}.$

For the edge $e = (u_1, u_2, \dots, u_n)$, u_1 and u_n are called the *end* vertices of e and u_2, u_3, \dots, u_{n-1} are called the *middle* vertices of e. If a vertex is an end vertex of an edge and a middle vertex of another edge then such a vertex is called a middle-end vertex of G and a vertex that belongs to no edge is called an isolated vertex. For the semigraph G in Example 1.2, v_1, v_4, v_5, v_7 and v_9 are the end vertices; v_3 is a middle vertex; v_2 and v_6 are the middle-end vertices and v_8 is an isolated vertex.

Two vertices in a semigraph are said to be **adjacent** if they belong to the same edge and are said to be **consecutively adjacent** if in addition they are consecutive in order as well. For example, in the semigraph G of Example 1.2, the vertices v_1 and v_4 are adjacent while the vertices v_2 and v_3 are consecutively adjacent. **Cardinality** of an edge e in a semigraph G is the number of vertices lying on that edge. In the semigraph G of Example 1.2, cardinality of $e = (v_1, v_2, v_3, v_4)$, denoted as |e|, is 4.

In this paper, we first define adjacency matrix of a semigraph and prove its uniqueness. An algorithm to construct the semigraph from adjacency matrix

¹ Corresponding Author

² Email: yogeshrigaidhani@gmail.com

Email: dcm.maths@coep.ac.in

Email: bpa.maths@coep.ac.in

Download English Version:

https://daneshyari.com/en/article/8903465

Download Persian Version:

https://daneshyari.com/article/8903465

<u>Daneshyari.com</u>