

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 63 (2017) 425-434 www.elsevier.com/locate/endm

Unitary Cayley Meet Signed Graphs

Deepa Sinha¹

Department of Mathematics South Asian University New Delhi-110 021, India

Ayushi Dhama²

Centre for Mathematical Sciences Banasthali University Banasthali-304 022 Rajasthan, India.

Abstract

A signed graph S is a graph in which every edge receive either '+' or '-' called the signs of the edges. The unitary Cayley graph X_n is a graph with vertex set Z_n , the integers modulo n, where n is a positive integer greater than 1. Two vertices x_1 and x_2 are adjacent in the unitary Cayley graph if and only if their difference is in U_n , where U_n denotes set of all units of the ring Z_n . The properties of balancing and clusterability of unitary Cayley meet signed graph S_n^{\wedge} are discussed. Apart from this, the canonically consistency of S_n^{\wedge} is determined when n has at most two distinct odd prime factors. Sign-compatibility has been worked out for these graphs as well.

Keywords: Signed graph, balance, clustering, C-consistency, unitary Cayley signed graph

Email: deepa_sinha2001@yahoo.com

² Email: ayushi.dhama2@gmail.com

1 Introduction

We use standard terminology of graph theory from the books of Harary [11] and West [20], where a graph is considered to be simple, finite and loopless. For the signed graphs Zaslavsky [21], [22] is followed.

1.1 Some basic notions and notations

A signed graph S (see [10]) is an ordered pair $S = (S^u, \sigma)$, where $S^u = (V, E)$ is a graph called the underlying graph of S and $\sigma : E \to \{+, -\}$ is a function from the edge set E of S^u into the set $\{+, -\}$, called the signature (or sign in short) of S. The negation of a signed graph S is a signed graph which is obtained from S by interchanging the sign of each edge from '+' to '-' and vice-versa.

A positive (negative) section of a subsigned graph S' of a signed graph S is defined as a maximal edge-induced connected subsigned graph in S which consisting only the positive (negative) edges of S.

An isomorphism of graphs G_1 and G_2 is a bijection between the vertex sets of G_1 and G_2 $f:V(G_1) \longrightarrow V(G_2)$ such that any two vertices x and y of G_1 are adjacent in G_1 if and only if f(x) and f(y) are adjacent in G_2 . This bijection is called "edge-preserving bijection". Two signed graphs S_1 and S_2 are said to be isomorphic if there is an isomorphism between their underlying graphs such that it preserves edge signs.

A positive cycle in a signed graph S is a cycle which contains an even number of negative edges. A signed graph S is a balanced signed graph if every cycle in S is positive (see [10]).

1.2 Balance in a signed graph

The partition criterion to characterize the balancing property of a signed graph was given by Harary [10].

Theorem 1.1 [10] A signed graph S is balanced if and only if its vertex set V(S) can be partitioned into two subsets V_1 and V_2 , one of them possibly empty, such that every positive edge joins two vertices in the same subset and

Download English Version:

https://daneshyari.com/en/article/8903468

Download Persian Version:

https://daneshyari.com/article/8903468

Daneshyari.com