

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in **DISCRETE MATHEMATICS**

[Electronic Notes in Discrete Mathematics 62 \(2017\) 51–56](https://doi.org/10.1016/j.endm.2017.10.010)

www.elsevier.com/locate/endm

Minimum density of identifying codes of king grids 1

Rennan Dantas $a,2$ Rudini M. Sampaio $a,2$ Frédéric Havet $b,4$

^a Universidade Federal do Ceará, Fortaleza, Brazil ^b *Universit´e Cˆote d'Azur, CNRS, I3S, INRIA, France*

Abstract

A set $C \subseteq V(G)$ is an *identifying code* in a graph G if for all $v \in V(G)$, $C[v] \neq \emptyset$, and for all distinct $u, v \in V(G)$, $C[u] \neq C[v]$, where $C[v] = N[v] \cap C$ and $N[v]$ denotes the closed neighbourhood of v in G . The minimum density of an identifying code in G is denoted by $d^*(G)$. In this paper, we study the density of king grids which are strong product of two paths. We show that for every king grid $G, d^*(G) \geq 2/9$. In addition, we show this bound is attained only for king grids which are strong products of two infinite paths. Given $k \geq 3$, we denote by \mathcal{K}_k the (infinite) king strip with k rows. We prove that $d^*(K_3)=1/3$, $d^*(K_4)=5/16$, $d^*(K_5)=4/15$ and $d^*(\mathcal{K}_6) = 5/18$. We also prove that $\frac{2}{9} + \frac{8}{81k} \leq d^*(\mathcal{K}_k) \leq \frac{2}{9} + \frac{4}{9k}$ for every $k \geq 7$.

Keywords: Identifying code, King grid, Discharging Method.

1 Introduction

Let G be a graph. The *neighbourhood* of a vertex v of G, denoted by $N(v)$, is the set of vertices adjacent to v in G , and the *closed neighbourhood* of v is the

 $⁴$ frederic.havet@cnrs.fr</sup>

¹ This research was supported by FUNCAP [4543945/2016], CNPq [425297/2016-0], ANR (Contract STINT ANR-13-BS02-0007) and the FUNCAP/CNRS project GAIATO INC-0083-00047.01.00/13.

 2 rennan@lia.ufc.br

³ rudini@lia.ufc.br

set $N[v] = N(v) \cup \{v\}$. Given a set $C \subseteq V(G)$, let $C[v] = N[v] \cap C$. We say that C is an *identifying code* of G if $C[v] \neq \emptyset$ for all $v \in V(G)$, and $C[u] \neq C[v]$ for all distinct $u, v \in V(G)$. Clearly, a graph G has an identifying code if and only if it contains no *twins* (vertices $u, v \in V(G)$ with $N[u] = N[v]$).

Let G be a (finite or infinite) graph with bounded maximum degree. For any non-negative integer r and vertex v, we denote by $B_r(v)$ the ball of radius r in G centered at v, that is $B_r(v) = \{x \mid dist(v, x) \leq r\}$. For any set of vertices $C \subseteq V(G)$, the *density* of C in G, denoted by $d(C, G)$, is defined by

$$
d(C, G) = \limsup_{r \to +\infty} \frac{|C \cap B_r(v_0)|}{|B_r(v_0)|} ,
$$

where v_0 is an arbitrary vertex in G. The infimum of the density of an identifying code in G is denoted by $d^*(G)$. Observe that if G is finite, then $d^*(G) = |C^*|/|V(G)|$, where C^* is a minimum-size identifying code of G.

The problem of finding low-density identifying codes was introduced in [\[13\]](#page--1-0) in relation to fault diagnosis in arrays of processors. Particular interest was dedicated to grids as many processor networks have a grid topology. Many results have been obtained on square grids $[4,1,10,2,12]$, triangular grids $[13,11]$, and hexagonal grids $[6,8,9]$. In this paper, we study king grids, which are strong products of two paths. The *strong product* of two graphs G and H , denoted by $G \boxtimes H$, is the graph with vertex set $V(G) \times V(H)$ and edge set :

$$
E(G \boxtimes H) = \{(a, b)(a, b') \mid a \in V(G) \text{ and } bb' \in E(H)\}
$$

$$
\cup \{(a, b)(a', b) \mid aa' \in E(G) \text{ and } b \in V(H)\}
$$

$$
\cup \{(a, b)(a', b') \mid aa' \in E(G) \text{ and } bb' \in E(H)\}.
$$

The two-way infinite path, denoted by $P_{\mathbb{Z}}$, is the graph with vertex set \mathbb{Z} and edge set $\{\{i, i+1\} \in \mathbb{Z}\}\$, and the *one-way infinite path*, denoted by $P_{\mathbb{N}}$, is the graph with vertex set N and edge set $\{\{i, i+1\} \mid i \in \mathbb{N}\}\$. A path is a connected subgraph of $P_{\mathbb{Z}}$. For every positive integer k, P_k is the subgraph of $P_{\mathbb{Z}}$ induced by $\{1, 2, \ldots, k\}$. A king grid is the strong product of two (finite or infinite) paths. The plane king grid is $\mathcal{G}_K = P_{\mathbb{Z}} \boxtimes P_{\mathbb{Z}}$, the half-plane king grid is $\mathcal{H}_K = P_{\mathbb{Z}} \boxtimes P_{\mathbb{N}}$, the quarter-plane king grid is $\mathcal{Q}_K = P_{\mathbb{N}} \boxtimes P_{\mathbb{N}}$, and the $king \ strip \ of \ height \ k \ is \ \mathcal{K}_k = P_{\mathbb{Z}} \boxtimes P_k.$

In 2001, Cohen et al. [\[7\]](#page--1-0) proved that $d^*(\mathcal{G}_K) \geq 2/9$. In 2002, Charon et al. [\[3\]](#page--1-0) obtained an optimal identifying code with density 2/9. They provided the tile depicted in Fig. [1,](#page--1-0) which generates a periodic tiling of the plane with periods (0, 6) and (6, 0), yielding an identifying code C_{∞} of the bidimensional infinite king grid with density $\frac{2}{9}$.

In this paper, using the Discharging Method (see Section 3 of [\[11\]](#page--1-0) for a

Download English Version:

<https://daneshyari.com/en/article/8903489>

Download Persian Version:

<https://daneshyari.com/article/8903489>

[Daneshyari.com](https://daneshyari.com)