

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 62 (2017) 75-80

www.elsevier.com/locate/endm

A column generation approach for the strong network orientation problem 1

Alexandre Xavier Martins a,c,2,3 , Christophe Duhamel b,4 Andréa Cynthia Santos c,5 ,

^a Universidade Federal de Ouro Preto, João Monlevade, Brazil

^b Universite Clermont Auvergne, CNRS, LIMOS, Clermont-Ferrand, France

^c ICD-LOSI, Université de Technologie de Troyes, Troyes, France.

Abstract

In this study, an aggregated flow formulation and a column generation strategy are proposed for the Strong Network Orientation Problem (SNOP) that consists in setting an orientation for each edge in a given graph, such that the resulting digraph is strongly connected and the total travel distance between all pairs of vertices is minimized. SNOP is NP-hard and finds application in urban networks.

Keywords: Network design, road networks, strong connectivity, column generation.

¹ This research is funded by Champagne-Ardenne Region, France

² The first author was partially supported by CNPq and FAPEMIG

³ Email: xmartins@decea.ufop.br

⁴ Email: christophe.duhamel@isima.fr

 $^{^5}$ Email: andrea.duhamel@utt.fr

1 Introduction

Let G = (V, E) be a simple connected undirected graph, with |V| = n vertices and |E| = m edges. Each vertex corresponds to a street intersection or a street end while an edge corresponds to a street segment between two vertices. The cost $c_{ij} > 0$ of an edge $\{i, j\} \in E$ may define its travel distance. The Strong Network Orientation Problem (SNOP) consists in setting an orientation for each edge such that the resulting digraph is strongly connected (there is a path between all pairs of vertices) and the total travel distance between all pairs of vertices is minimized. This problem is NP-hard [1] and finds tactical applications in urban networks.

The pioneering study [3] states the conditions for which an orientation can be found in a graph such that it remains strongly connected. Authors in [4] propose several heuristics for the SNOP problem, while [2] addresses a biobjective version of a similar problem, named Unidirectional Road Network design Problem (URND). We propose here an aggregated flow formulation (Section 2) and a column generation strategy (Section 3). Then, computational experiments and concluding remarks are given in Section 4.

2 Aggregated flow formulation

The aggregated multiflow formulation makes use of a decision variable $x_{ij} \in \{0, 1\}$ for each potential arc $(i, j) \in A$, stating if it is selected $(x_{ij} = 1)$ or not $(x_{ij} = 0)$. In order to ensure the strong connectivity, one unit of flow is sent from any node to any other node in V, using the flow variable $f_{ij}^s \ge 0$ for each origin node $s \in V$ and each arc $(i, j) \in A$. These flows also help computing the distance between s and the other nodes. Thus, the model is as follows:

(Compact) min
$$\sum_{(i,j)\in A} \sum_{s\in V} c_{ij} f_{ij}^s$$
 s.t. (1)

$$x_{ij} + x_{ji} = 1 \quad \forall \ \{i, j\} \in E \tag{2}$$

$$\sum_{(s,i)\in A} f_{si}^s - \sum_{(i,s)\in A} f_{is}^s = n - 1 \,\forall s \in V$$
(3)

$$\sum_{(j,i)\in A} f_{ji}^s - \sum_{(i,j)\in A} f_{ij}^s = 1 \quad \forall s \in V, i \in V \setminus \{s\}$$

$$\tag{4}$$

$$f_{ij}^s - (n-1)x_{ij} \le 0 \quad \forall s \in V, (i,j) \in A$$

$$\tag{5}$$

$$x_{ij} \in \{0,1\} \,\forall (i,j) \in A \tag{6}$$

$$f_{ij}^s \ge 0 \quad \forall s \in V, (i,j) \in A \tag{7}$$

Download English Version:

https://daneshyari.com/en/article/8903493

Download Persian Version:

https://daneshyari.com/article/8903493

Daneshyari.com