

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 62 (2017) 87–92

www.elsevier.com/locate/endm

Maximum Cuts in Edge-colored Graphs ¹

Rubens Sucupira ^a, Luerbio Faria ^a, Sulamita Klein ^b Ignasi Sau ^{c,d}, and Uéverton S. Souza ^{e,2}

a IME, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brasil
b IM, COPPE, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brasil
c CNRS, LIRMM, Université de Montpellier, Montpellier, France
d Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brasil
e IC, Universidade Federal Fluminense, Niterói, Brasil

Abstract

The input of the MAXIMUM COLORED CUT problem consists of a graph G = (V, E) with an edge-coloring $c: E \to \{1, 2, 3, \ldots, p\}$ and a positive integer k > 0, and the question is whether G has a nontrivial edge cut using at least k colors. The Colorful Cut problem has the same input but asks for a nontrivial edge cut using all colors. Unlike what happens for the classical MAXIMUM Cut problem, we prove that both problems are NP-complete even on complete, planar, or bounded treewidth graphs. Furthermore, we prove that Colorful Cut is NP-complete even when each color class induces a clique of size at most 3, but is trivially solvable when each color induces a K_2 . On the positive side, we prove that MAXIMUM COLORED Cut is fixed-parameter tractable when parameterized by either k or p, and that it admits a cubic kernel in both cases.

Keywords: colored cuts, edge cuts, max cut, planar graph, polynomial kernel.

¹ Supported by CNPQ, CAPES, and FAPERJ.

² Email: ueverton@ic.uff.br

1 Introduction

Let G = (V, E) be a simple graph with an edge coloring $c : E \to \{1, 2, ..., p\}$, not necessarily proper. Given a proper subset $S \subset V$, we define the edge $cut \partial S$ as the subset of E where the edges have one endpoint in S and the other in $V \setminus S$. We represent by $c(\partial S)$ the set of colors that are in ∂S , i.e., $c(\partial S) = \{c(e) \mid e \in \partial S\}$. We are interested in the problem of finding a subset $S \subset V$ such that $|c(\partial S)| \ge |c(\partial T)|$ for every $T \subset V$. This problem is called MAXIMUM COLORED CUT and its decision form is stated next.

```
MAXIMUM COLORED CUT
```

INSTANCE: A graph G = (V, E) with an edge coloring $c : E \to \{1, 2, \dots, p\}$ and an integer k > 0.

QUESTION: Is there a proper subset $S \subset V$ such that $|c(\partial S)| \geq k$?

The classical (simple) MAXIMUM CUT problem [5] is the particular case of MAXIMUM COLORED CUT when $c: E \to \mathbb{N}$ is an injective function. Therefore, we are interested in analyzing the complexity of MAXIMUM COLORED CUT on graph classes \mathcal{C} for which MAXIMUM CUT is solvable in polynomial time. In addition, we are also interested in the complexity of determining if the input graph has a subset $S \subset V$ such that $|c(\partial S)| = p$, i.e., if there is an edge cut ∂S using all the colors; we call this problem COLORFUL CUT.

```
Colorful Cut
```

INSTANCE: A graph G = (V, E) with an edge coloring $c : E \to \{1, 2, \dots, p\}$. QUESTION: Is there a proper subset $S \subset V$ such that $c(\partial S) = p$?

Although the complexity of MINIMUM COLORED CUT, which is defined analogously but with $|c(\partial S)| \leq k$?, has been explored in recent years (cf., for instance, [2]), to the best of our knowledge a study on the complexity of MAXIMUM COLORED CUT is novel. As COLORFUL CUT is a particular case of MAXIMUM COLORED CUT, our hardness results deal with COLORFUL CUT while the tractable cases will be presented for MAXIMUM COLORED CUT.

2 NP-completeness

Hadlock [6] proved that (simple) MAXIMUM CUT is polynomial-time solvable on planar graphs. In this section we prove, among other results, the NP-completeness of COLORFUL CUT on a particular subclass of planar graphs.

Download English Version:

https://daneshyari.com/en/article/8903495

Download Persian Version:

https://daneshyari.com/article/8903495

<u>Daneshyari.com</u>