Intersection Graphs of Orthodox Paths in Trees

Claudson Ferreira Bornstein ${ }^{1}$
DCC-IM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

José Wilson Coura Pinto ${ }^{2}$

PESC-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Dieter Rautenbach ${ }^{3}$
Institute of Optimization and Operations Research, Ulm University, Ulm, Germany

Abstract

We study the graph classes ORTH $[h, s, t]$ introduced by Jamison and Mulder, and focus on the case $s=2$, which is closely related to the well-known VPT and EPT graphs. We collect general properties of the graphs in ORTH $[h, 2, t]$, and provide a characterization in terms of tree layouts. Answering a question posed by Golumbic, Lipshteyn, and Stern, we show that ORTH $[h+1,2, t] \backslash$ ORTH $[h, 2, t]$ is non-empty for every $h \geq 3$ and $t \geq 3$. We derive decomposition properties, which lead to efficient recognition algorithms for the graphs in $\operatorname{ORTH}[h, 2,2]$ for every $h \geq 3$. Finally, we show that the graphs in $\operatorname{ORTH}[3,2,3]$ are line graphs of planar graphs.

Keywords: Intersection graph, (h, s, t)-representation, orthodox (h, s, t)-representation, line graph, chordal graph

1 Introduction

Intersection graphs are a well studied topic $[12,8]$ and the intersection graphs of paths in trees have received special attention. In the present paper we study so-called orthodox representations with bounds on the maximum degree of the host tree as well as on the size of the intersections corresponding to adjacencies. The corresponding notions were introduced by Jamison and Mulder in [9,10,11].

For positive integers h, s, and t, an (h, s, t)-representation of a graph G is a pair (T, \mathcal{S}), where T is a tree of maximum degree at most h, and \mathcal{S} is a collection $\left(S_{u}\right)_{u \in V(G)}$ of subtrees S_{u} of maximum degree at most s of T, one for each vertex u of G, such that two distinct vertices u and v of G are adjacent if and only if S_{u} and S_{v} have at least t vertices in common. An (h, s, t) representation (T, \mathcal{S}) of G with $\mathcal{S}=\left(S_{u}\right)_{u \in V(G)}$ is orthodox if, for every vertex u of G, all leaves of S_{u} are also leaves of T, and, for every two distinct vertices u and v of G, the following three properties are equivalent:
(i) u and v are adjacent.
(ii) S_{u} and S_{v} have at least t vertices in common.
(iii) S_{u} and S_{v} share a leaf of T.

Let $[h, s, t]$ and ORTH $[h, s, t]$ be the hereditary classes of graphs that have an (h, s, t)-representation and an orthodox (h, s, t)-representation, respectively. If no upper bound on the maximum degree of the host T is imposed, we replace h with ∞. Similarly, if no upper bound on the maximum degree of the subtrees in \mathcal{S} is imposed, we replace s with ∞.

Using this terminology, Gavril's famous result [3] states that the class of chordal graphs coincides with $[\infty, \infty, 1]$. Jamison and Mulder [10,11] attribute to McMorris and Scheinerman [13] the insight that

$$
[\infty, \infty, 1]=\operatorname{ORTH}[3,3,1]=\operatorname{ORTH}[3,3,2] .
$$

The well studied vertex and edge intersection graphs of paths in trees (VPTgraphs and EPT-graphs) $[4,5,6]$ coincide with $[\infty, 2,1]$ and $[\infty, 2,2$], respectively. Golumbic and Jamison [5] have shown that deciding whether a given graph belongs to [3, 2, 1] is NP-complete. Alcón, Gutierrez, and Mazzoleni [1] generalized this result for every $h \geq 3$. Golumbic, Lipshteyn, and Stern [7]

[^0]
https://daneshyari.com/en/article/8903497

Download Persian Version:

https://daneshyari.com/article/8903497

Daneshyari.com

[^0]: $\overline{1 \text { Email: }}$ cfb@cos.ufrj.br
 2 Email: jwcoura@cos.ufrj.br
 3 Email: dieter.rautenbach@uni-ulm.de

