

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 62 (2017) 297–302 www.elsevier.com/locate/endm

On graphs with a single large Laplacian eigenvalue

L. Emilio Allem^{a,4} Antonio Cafure^{b,c,d,1,2,4} Ezequiel Dratman^{b,e,1,2,4} Luciano N. Grippo^{e,2,4} Martín D. Safe^{f,2,4} Vilmar Trevisan^{a,3,4}

^a Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Brazil ^b CONICET, Argentina

^c Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, Argentina

^d Departamento de Matemática, CBC, Universidad de Buenos Aires, Argentina

^e Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina

^f Departamento de Matemática, Universidad Nacional del Sur, Argentina

Abstract

We address the problem of characterizing those graphs G having only one Laplacian eigenvalue greater than or equal to the average degree of G. Our conjecture is that these graphs are stars plus a (possible empty) set of isolated vertices.

Keywords: anticomponents, Laplacian eigenvalues, stars

¹ Partially supported by CONICET PIP 112-2013-010-0598.

² Partially supported by CONICET UNGS-144-20140100027-CO.

 $^{^3\,}$ V. Trevisan acknowledges the support of CNPq - Grant 303334/2016-9.

⁴ Email addresses: emilio.allem@ufrgs.br (L. E. Allem), acafure@ungs.edu.ar (A. Cafure), edratman@ungs.edu.ar (E. Dratman), lgrippo@ungs.edu.ar (L. N. Grippo), msafe@uns.edu.ar (M. D. Safe), trevisan@mat.ufrgs.br (V. Trevisan)

1 Introduction

Let G be a graph on n vertices and m edges and let $d_1 \geq \cdots \geq d_n$ be its degree sequence. Let A(G) be its adjacency matrix and D(G) its diagonal matrix of vertex degrees. The Laplacian matrix of G is the positive semidefinite matrix L(G) = D(G) - A(G). The spectrum of L(G) is called the Laplacian spectrum of G and is denoted by $Lspec(G) = \{\mu_1, \mu_2, \ldots, \mu_n\}$, where $n \geq \mu_1 \geq \mu_2 \geq$ $\cdots \geq \mu_n = 0$. Understanding the distribution of Laplacian eigenvalues of graphs is a problem that is both relevant and difficult. It is relevant due to the many applications related to Laplacian matrices (see, for example [8,9]). It seems to be difficult because little is known about how the n Laplacian eigenvalues are distributed in the interval [0, n].

Our main motivation is understanding the structure of graphs that have few large Laplacian eigenvalues. In particular, we would like to characterize graphs that have a single large Laplacian eigenvalue. What do we mean by a large Laplacian eigenvalue? A reasonable measure is to compare this eigenvalue with the average of all eigenvalues. Since the average of Laplacian eigenvalues equals the average degree $\overline{d}(G) = \frac{2m}{n}$ of G, we say that a Laplacian eigenvalue is large if it is greater than or equal to the average degree.

Inspired by this idea, the paper [2] introduces the spectral parameter $\sigma(G)$ which counts the number of Laplacian eigenvalues greater than or equal to $\overline{d}(G)$. Equivalently, $\sigma(G)$ is the largest index *i* for which $\mu_i \geq \frac{2m}{n}$.

There is evidence that $\sigma(G)$ plays an important role in defining structural properties of a graph G. For example, it is related to the clique number ω of G (the number of vertices of the largest induced complete subgraph of G) and it also gives insight about the Laplacian energy of a graph [10,2]. Moreover several structural properties of a graph are related to σ (see, for example [1,2]).

In this paper we are concerned with furthering the study of $\sigma(G)$. In particular, we deal with a problem posed in [2] which asks for characterizing all graphs having $\sigma(G) = 1$, *i.e.* having only one large Laplacian eigenvalue. We conjecture that these graphs are some stars plus a (possible empty) set of isolated vertices ($K_{1,r}$ denotes the star on r+1 vertices and + the disjoint union):

Conjecture 1.1 Let G be a graph. Then $\sigma(G) = 1$ if and only if G is isomorphic to K_1 , $K_2 + sK_1$ for some $s \ge 0$, or $K_{1,r} + sK_1$ for some $r \ge 2$ and $0 \le s < r - 1$.

In this work, we show that this conjecture is true if it holds for graphs which are simultaneously connected and co-connected (Conjecture 4.3) and prove that Conjecture 1.1 is true for forests and extended P_4 -laden graphs [4] Download English Version:

https://daneshyari.com/en/article/8903530

Download Persian Version:

https://daneshyari.com/article/8903530

Daneshyari.com