European Journal of Combinatorics 74 (2018) 39-47

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Diversity of uniform intersecting families*

Andrey Kupavskii

European Journal of Combinatorics

Moscow Institute of Physics and Technology, University of Birmingham, Russian Federation

ARTICLE INFO

Article history: Received 8 September 2017 Accepted 14 July 2018 Available online 3 August 2018

ABSTRACT

A family $\mathcal{F} \subset 2^{[n]}$ is called *intersecting*, if any two of its sets intersect. Given an intersecting family, its *diversity* is the number of sets not passing through a fixed most popular element of the ground set. Peter Frankl made the following conjecture: for n > 3k > 0 any intersecting family $\mathcal{F} \subset {[n] \choose k}$ has diversity at most ${n-3 \choose k-2}$. This is tight for the following "two out of three" family: $\{F \in {[n] \choose k} : |F \cap [3]| \ge 2\}$. In this note we prove this conjecture for $n \ge ck$, where *c* is a constant independent of *n* and*k*. In the last section, we discuss the case 2k < n < 3k and show that one natural generalization of Frankl's conjecture does not hold.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We denote $[n] := \{1, ..., n\}, 2^{[n]} := \{S : S \subset [n]\}$ and $\binom{[n]}{k} := \{S : S \subset [n], |S| = k\}$. Any subset of $2^{[n]}$ we call a *family*. A family $\mathcal{F} \subset 2^{[n]}$ is called *intersecting*, if any two of its sets intersect. The *degree* δ_i of an element $i \in [n]$ is the number of sets from \mathcal{F} containing *i*. We denote by $\Delta(\mathcal{F})$ the largest degree of an element: the maximum of δ_i over $i \in [n]$. The *diversity* $\gamma(\mathcal{F})$ of \mathcal{F} is the number of sets, not containing the element of the largest degree: $\gamma(\mathcal{F}) := |\mathcal{F}| - \Delta(\mathcal{F})$.

The study of intersecting families started from the famous Erdős–Ko–Rado theorem [5], and since then much effort was put into understanding the structure of large intersecting families. The EKR theorem states that the largest uniform intersecting family consists of all sets containing a given element, that is, the maximal family of diversity 0. The Hilton–Milner theorem [9] gives the largest size of the family with diversity at least 1. Frankl's theorem [6], especially in its strengthened version due to Kupavskii and Zakharov [17] bounds the size of the families with diversity at least $\binom{n-u-1}{n-k-1}$, where $3 \le u \le k$ is a fixed real number. We also refer to [16], where, among other results, a conclusive version of this theorem was obtained.

https://doi.org/10.1016/j.ejc.2018.07.005

Research supported by the grant RNF 16-11-10014. *E-mail address:* kupavskii@yandex.ru.

^{0195-6698/© 2018} Elsevier Ltd. All rights reserved.

Theorem 1 ([17]). Let n > 2k > 0 and $\mathcal{F} \subset {\binom{[n]}{k}}$ be an intersecting family. Then, if $\gamma(\mathcal{F}) \geq {\binom{n-u-1}{n-k-1}}$ for some real 3 < u < k. then

$$|\mathcal{F}| \le \binom{n-1}{k-1} + \binom{n-u-1}{n-k-1} - \binom{n-u-1}{k-1}.$$
(1)

It is easy to see that the theorem above is sharp for each integer $u \in [3, k]$: consider the families

$$\mathcal{A}_u := \{F \in \binom{[n]}{k} : F \supset [2, u+1] \text{ or } 1 \in F, F \cap [2, u+1] \neq \emptyset\}, \quad u \in [2, k]$$

The family \mathcal{A}_3 has diversity $\binom{n-4}{k-3}$ and size $\binom{n-1}{k-1} + \binom{n-4}{k-3} - \binom{n-4}{k-1} = 3\binom{n-3}{k-2} + \binom{n-3}{k-3}$. The family \mathcal{A}_2 has the same size as \mathcal{A}_3 (and this is why the case u = 2 does not appear in Theorem 1), but the diversity of \mathcal{A}_2 is bigger: it is equal to $\binom{n-3}{k-2}$. The following problem was suggested by Katona and addressed by Lemons and Palmer [18]: what is the maximum diversity of an intersecting family $\mathcal{F} \subset \binom{[n]}{k}$? They found out that for $n > 6k^3$ we have $\gamma(\mathcal{F}) \leq \binom{n-3}{k-2}$, with the equality possible only for \mathcal{A}_2 and some of its subfamilies. Recently, Frankl [7] (Theorem 2.4) proved that $\gamma(\mathcal{F}) \leq \binom{n-3}{k-2}$ for all $n \geq 6k^2$, and conjectured that the same bolds for n > 3k. holds for n > 3k.

The purpose of this note is to prove the following theorem

Theorem 2. There exists a constant *C*, such that for any n > Ck > 0 any intersecting family $\mathcal{F} \subset {\binom{[n]}{k}}$ satisfies $\gamma(\mathcal{F}) \leq {\binom{n-3}{k-2}}$. Moreover, if $\gamma(\mathcal{F}) = {\binom{n-3}{k-2}}$, then \mathcal{F} is a subfamily of an isomorphic copy of \mathcal{A}_2 .

We note that a somewhat similar proof strategy, which first uses results on Boolean functions to obtain some rough structure for the problem, and then uses combinatorics to obtain a precise result, was recently used by Keller and Lifshitz [14] in a much more general setting.

2. Proof of Theorem 2

The following theorem, proven by Dinur and Friedgut [3], is the main ingredient in the proof. We say that a family $\mathcal{J} \subset 2^{[n]}$ is a *j*-junta, if there exists a subset $J \subset [n]$ of size *j* (the center of the junta), such that the membership of a set in \mathcal{F} is determined only by its intersection with J, that is, for some family $\mathcal{J}^* \subset 2^J$ (the defining family) we have $\mathcal{F} = \{F : F \cap J \in \mathcal{J}^*\}$.

Theorem 3 ([3]). For any integer $r \ge 2$, there exist functions j(r), c(r), such that for any integers 1 < j(r) < k < n/2, if $\mathcal{F} \subset {n \choose k}$ is an intersecting family with $|\mathcal{F}| \ge c(r) {n-r \choose k-r}$, then there exists an intersecting *j*-junta \mathcal{J} with j < j(r) and

$$|\mathcal{F} \setminus \mathcal{J}| \le c(r) \binom{n-r}{k-r}.$$
(2)

We start the proof of the theorem. Choose *C* sufficiently large (its choice will become clear later), n > Ck > 0 and an intersecting family $\mathcal{F} \subset {\binom{[n]}{k}}$. Then, applying Theorem 3 with r = 5, we get that there exists a *j*-junta $\mathcal{J}, j \leq j(5)$, such that $|\mathcal{F} \setminus \mathcal{J}| \leq c(5) {\binom{n-5}{k-5}} < {\binom{n-5}{k-4}}$, where the second inequality below provided *C* is large anomaly. holds provided C is large enough.

The first step is to show that, unless $\mathcal{J} = \mathcal{A}_2$, we have $\gamma(\mathcal{F}) < \binom{n-3}{k-2}$.

Proposition 4. Consider an intersecting *j*-junta $\mathcal{J} \subset 2^{[n]}$, with center $J \subset [n], |J| = j$, and defined by an intersecting family $\mathcal{J}^* \subset 2^J$. Then \mathcal{J} satisfies one of the two following properties:

- \mathcal{J} is contained in a family isomorphic to \mathcal{A}_2 .
- There exists $i \in I$, such that all sets from \mathcal{J}^* of size at most 2 contain i.

Proof. Note that the intersecting families of ≤ 2 -element sets which cannot be pierced by a single element are isomorphic to $\binom{[3]}{2}$. Therefore, the junta that does not fall into the second category must

Download English Version:

https://daneshyari.com/en/article/8903543

Download Persian Version:

https://daneshyari.com/article/8903543

Daneshyari.com