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a b s t r a c t

Two well-known polytopes whose vertices are indexed by permu-
tations in the symmetric group Sn are the permutohedron Pn and
the Birkhoff polytope Bn. We consider polytopes Pn(Π ) and Bn(Π ),
whose vertices correspond to the permutations in Sn avoiding a
set of patterns Π . For various choices of Π , we explore the Ehrhart
polynomials and h∗-vectors of these polytopes as well as other
aspects of their combinatorial structure.

For Pn(Π ), we consider all subsets Π ⊆ S3 and are able
to provide results in most cases. To illustrate, Pn(123, 132) is a
Pitman–Stanley polytope, the number of interior lattice points in
Pn(132, 312) is a derangement number, and the normalized volume
of Pn(123, 231, 312) is the number of trees on n vertices.

The polytopes Bn(Π ) seem much more difficult to analyze, so
we focus on four particular choices of Π . First we show that the
Bn(231, 321) is exactly the Chan–Robbins–Yuen polytope. Next we
prove that for any Π containing {123, 312} we have h∗(Bn(Π )) =

1. Finally, we study Bn(132, 312) and B̃n(123), where the tilde
indicates that we choose vertices corresponding to alternating
permutations avoiding the pattern 123. In both cases we use order
complexes of posets and techniques from toric algebra to construct
regular, unimodular triangulations of the polytopes. The posets
involved turn out to be isomorphic to the lattices of Young dia-
grams contained in a certain shape, and this permits us to give an
exact expression for the normalized volumes of the corresponding
polytopes via the hook formula. Finally, Stanley’s theory of (P, ω)-
partitions allows us to show that their h∗-vectors are symmetric
and unimodal.

Various questions and conjectures are presented throughout.
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1. Introduction

Let Sn denote the symmetric group on 1, 2, . . . , n and S = ∪n≥0Sn. Let π ∈ Sk and σ ∈ Sn. We
say that σ contains the pattern π if there is some substring σ ′ of σ whose elements have the same
relative order as those in π . Alternatively, we view σ ′ as standardizing to π by replacing the smallest
element of σ ′ with 1, the next smallest by 2, and so on. If there is no such substring then we say that
σ avoids the pattern π . If Π ⊆ S, then we say σ avoids Π if σ avoids every element of Π . We will use
the notation

Avn(Π ) := {σ ∈ Sn | σ avoids Π}.

Note this is not the avoidance class of Π which is the union of these sets over all n.
A polytope P ⊆ Rn is the convex hull of finitely many points, written P = conv{v1, . . ., vk}.

Equivalently, a polytope may be described as a bounded intersection of finitely many half-spaces.
The dimension of P is the dimension of its affine span. We think of vectors in Rn as columns and use
aTb to denote the usual inner product of a, b ∈ Rn. An affine hyperplaneH determined by the equation
aT x = b for some a, b ∈ Rn is called supporting if aTp ≥ b for every p ∈ P . Some texts, such as [19],
insist that H ∩ P be nonempty; our definition aligns with those found in [6,37]. If H is a supporting
hyperplane, then the set H ∩ P is called a face of P and is a subpolytope of P . Faces of dimension 0
are vertices, faces of dimension 1 are called edges, and faces of dimension dim P − 1 are called facets.
Additionally, we say a polytope is a lattice polytope if each vertex is an element ofZn. Lattice polytopes
have long found connections with permutations, in particular via the permutohedron and Birkhoff
polytope.

The permutohedron is defined as

Pn := conv{(a1, . . ., an) | a1 · · · an ∈ Sn}.

We will often make no distinction between a permutation and its corresponding point in Rn. This
polytope was first described in [30] and has connections to the geometry of flag varieties as well as
representations of GLn. We refer to [42] for general background regarding permutohedra.

The Birkhoff polytope is the polytope

Bn := conv

⎧⎨⎩X = (xi,j) ∈ (R≥0)n×n
|

n∑
i=1

xi,j =

n∑
j=1

xi,j = 1 for all i, j

⎫⎬⎭ .

The Birkhoff–von Neumann Theorem states that the vertices of Bn are the permutation matrices.
In this article, we describe a natural blending of pattern avoidance with the permutohedron and

the Birkhoff polytope. Specifically, for any set of patterns Π , we define Pn(Π ) to be the subpolytope
of Pn obtained by taking the convex hull of those vertices corresponding to permutations in Avn(Π ).
The polytope Bn(Π ) is defined similarly. We study the Ehrhart polynomials and h∗-vectors of these
polytopes as well as other aspects of their combinatorial structure.

The rest of this paper is organized as follows. In Section 2 we review some basic notions about
pattern avoidance and polytopes which will be needed throughout. Section 3 focuses on the per-
mutohedron case Pn(Π ). We first show in Proposition 3.2 that the action of a certain subgroup of
the dihedral group of the square produces unimodularly equivalent polytopes. We then consider
all possible Π ⊆ S3 and are able to provide results for most of the orbits of this action. Specific
propositions are listed in Table 1. As a sampling, Pn(123, 132) is a Pitman–Stanley polytope, the
number of interior lattice points in Pn(132, 312) is a derangement number, and the normalized volume
of Pn(123, 231, 312) is the number of trees on n vertices.

The Π-avoiding Birkhoff polytope appears to be much harder to analyze in general. So we
concentrate on four specific examples. In Section 4, we show that Bn(231, 321) is a polytope studied
by Chan, Robbins, and Yuen. Next we prove that for any Π containing the permutations 123 and
312 we have h∗(Bn(Π )) = 1. In Section 5 we begin our study of Bn(132, 312) and B̃n(123), the tilde
indicating that we choose vertices corresponding to alternating permutations avoiding the pattern
123. In both cases we use order complexes of posets and techniques from toric algebra to construct
regular, unimodular triangulations of the polytopes. The posets involved turn out to be isomorphic
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