# Random 4-regular graphs have 3-star decompositions asymptotically almost surely 

Michelle Delcourt ${ }^{\text {a }}$, Luke Postle ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA<br>${ }^{\text {b }}$ Combinatorics and Optimization Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

## A R T I C L E I N F O

## Article history:

Received 9 December 2016
Accepted 19 April 2018
Available online 24 May 2018


#### Abstract

Barát and Thomassen conjectured in 2006 that the edges of every planar 4-regular 4-edge-connected graph can be decomposed into copies of the star with 3 leaves. Shortly afterward, Lai constructed a counterexample to this conjecture. Using the small subgraph conditioning method of Robinson and Wormald, we prove that a random 4-regular graph has an $S_{3}$-decomposition asymptotically almost surely, provided the number of vertices is divisible by 3.


© 2018 Elsevier Ltd. All rights reserved.

## 1. Introduction

A question that has garnered much study is whether the edges of a graph $G$ can be decomposed into copies of a small fixed subgraph, say $F$. Of course, some natural divisibility conditions arise for such a decomposition, namely that $e(F)$ must divide $e(G)$. Kotzig observed [9] that if $G$ is connected and $e(G)$ is even, then $G$ decomposes into copies of $S_{2}$, the star with 2 leaves. What happens for larger $F$; in particular, are there natural conditions when $F$ is isomorphic to the $S_{3}$, the star with 3 leaves? Not much was known about this problem until Thomassen's breakthrough results [14] on the weak 3-flow conjecture. In particular, we note the following theorem which follows from a more general theorem of Lovász, Thomassen, Wu, and Zhang [11].

Theorem 1.1. If $F \simeq S_{k}$, the star with $k$ leaves, and $G$ is a d-edge-connected graph such that $k$ divides $e(G)$ and $2 \leq k \leq\lceil d / 2\rceil$, then the edge set of $G$ decomposes into copies of $F$.

In fact, Theorem 1.1 is tight for $k \geq 3$. To see this, first note that if $k>d$, then $K_{k}$ is a $d$-edgeconnected graph with no $S_{k}$ decomposition. For $k \leq d$ with $k \geq 3$ and $k>\lceil d / 2\rceil$, consider $k$ copies of

[^0]

Fig. 1. On the left is a non-planar 4-regular 4-edge-connected graph with no $S_{3}$-decomposition. On the right is Lai's planar construction.
$K_{d}$ with edges added so that the resulting graph $G$ is $d$-regular and $d$-edge-connected. If there existed an $S_{k}$-decomposition of $G$ (a decomposition of the edges of $G$ into copies of $S_{k}$ ), then because $k>d / 2$, such a decomposition would naturally partition the vertices into $\frac{d}{2 k} v(G)=\frac{d^{2}}{2}$ centers of the stars and $\frac{2 k-d}{2 k} v(G)=\frac{d(2 k-d)}{2}$ non-centers. However, the non-centers must form an independent set, and thus, there are at most $k$ of them, the desired contradiction (because $k<\frac{d(2 k-d)}{2}$ when $2 k-d \geq 2$ ).

Thus, when $F$ is isomorphic to $S_{3}$, Theorem 1.1 implies that a $d$-regular $d$-edge-connected graph $G$ has an $F$-decomposition if $d \geq 5$ and 3 divides $e(G)$. For $d=3$, it is easy to observe that a 3 -regular graph has an $S_{3}$-decomposition if and only if it is bipartite. As for the case when $d=4$, the construction in Fig. 1 on the left provides a non-planar example of a 4-regular 4-edge-connected graph $G$ where 3 divides $e(G)$ but $G$ does not have an $S_{3}$-decomposition. This led Barát and Thomassen [2], who knew of this example, to conjecture in 2006 that every planar 4-regular 4-edge-connected graph $G$ where 3 divides $e(G)$ has an $S_{3}$-decomposition. Unfortunately in the following year, Lai presented an infinite family of clever counterexamples (replicated in Fig. 1 on the right) to this nice conjecture [10].

Given that a typical $d$-regular graph is $d$-edge-connected, a natural setting in which to study these questions is that of random regular graphs. We utilize the configuration model (also known as the pairing model) introduced by Bollobás [4]. Let $d \geq 1$ and $d n$ be even; we take a total of $d n$ points and partition them into $n$ cells each consisting of exactly $d$ points. Any perfect matching of $\frac{d n}{2}$ pairs of points is said to be a configuration, also known as a pairing. Each configuration corresponds to a multigraph (possibly with loops) where the cells are vertices and the pairs are edges. We denote the uniform probability space of configurations by $\mathcal{P}_{n, d}$. In the configuration model, we choose an element of $\mathcal{P}_{n, d}$ uniformly at random and discard the result if the corresponding $d$-regular multigraph has loops or parallel edges. This was shown to be equivalent to choosing a $d$-regular (simple) graph on $n$ vertices uniformly at random (c.f. Wormald's survey paper [17] for more details).

Observe that in any simple 4-regular graph $G$, an orientation of the edges of $G$ in which every in-degree is either 4 or 1 (alternatively every out-degree is either 0 or 3 ) is equivalent to an $S_{3}$ decomposition, that is a decomposition of the edges of $G$ into copies of $S_{3}$; namely, the vertices with outdegree 3 are the centers of the stars formed by their out-edges. In light of this, we consider orientations of the edges of a configuration where the out-degree of every cell is 0 or 3 , where the out-degree of a cell is defined to be the number of points in the cell that are the tail of some edge in the orientation. We call such an orientation a ( 3,0 )-orientation.

The main result of this paper is as follows. Note that all asymptotics in this article are as $n$ tends to infinity along positive integers divisible by 3 .

Theorem 1.2. A configuration in $\mathcal{P}_{n, 4}$ has a (3, 0)-orientation asymptotically almost surely, provided that $n$ is divisible by 3 .

Any 4-regular (simple) graph $G$ on $n$ vertices corresponds to exactly (4!) ${ }^{n}=24^{n}$ configurations in $\mathcal{P}_{n, 4}$. Because each such graph corresponds to the same number of configurations, it follows that $G$ is a (uniformly) random 4-regular (simple) graph in the configuration model. The probability that a

# https://daneshyari.com/en/article/8903569 

Download Persian Version:

## https://daneshyari.com/article/8903569

## Daneshyari.com


[^0]:    E-mail addresses: delcour2@illinois.edu (M. Delcourt), lpostle@uwaterloo.ca (L. Postle).

