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a b s t r a c t

Barát and Thomassen conjectured in 2006 that the edges of every
planar 4-regular 4-edge-connected graph can be decomposed into
copies of the star with 3 leaves. Shortly afterward, Lai constructed
a counterexample to this conjecture. Using the small subgraph
conditioning method of Robinson and Wormald, we prove that a
random 4-regular graph has an S3-decomposition asymptotically
almost surely, provided the number of vertices is divisible by 3.
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1. Introduction

A question that has garnered much study is whether the edges of a graph G can be decomposed
into copies of a small fixed subgraph, say F . Of course, some natural divisibility conditions arise for
such a decomposition, namely that e(F ) must divide e(G). Kotzig observed [9] that if G is connected
and e(G) is even, then G decomposes into copies of S2, the star with 2 leaves. What happens for larger
F ; in particular, are there natural conditions when F is isomorphic to the S3, the star with 3 leaves?
Not much was known about this problem until Thomassen’s breakthrough results [14] on the weak
3-flow conjecture. In particular, we note the following theorem which follows from a more general
theorem of Lovász, Thomassen, Wu, and Zhang [11].

Theorem 1.1. If F ≃ Sk, the star with k leaves, and G is a d-edge-connected graph such that k divides
e(G) and 2 ≤ k ≤ ⌈d/2⌉, then the edge set of G decomposes into copies of F .

In fact, Theorem 1.1 is tight for k ≥ 3. To see this, first note that if k > d, then Kk is a d-edge-
connected graph with no Sk decomposition. For k ≤ dwith k ≥ 3 and k > ⌈d/2⌉, consider k copies of
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Fig. 1. On the left is a non-planar 4-regular 4-edge-connected graph with no S3-decomposition. On the right is Lai’s planar
construction.

Kd with edges added so that the resulting graph G is d-regular and d-edge-connected. If there existed
an Sk-decomposition of G (a decomposition of the edges of G into copies of Sk), then because k > d/2,
such a decomposition would naturally partition the vertices into d

2kv(G) =
d2
2 centers of the stars and

2k−d
2k v(G) =

d(2k−d)
2 non-centers. However, the non-centers must form an independent set, and thus,

there are at most k of them, the desired contradiction (because k < d(2k−d)
2 when 2k − d ≥ 2).

Thus, when F is isomorphic to S3, Theorem 1.1 implies that a d-regular d-edge-connected graph G
has an F-decomposition if d ≥ 5 and 3 divides e(G). For d = 3, it is easy to observe that a 3-regular
graph has an S3-decomposition if and only if it is bipartite. As for the casewhen d = 4, the construction
in Fig. 1 on the left provides a non-planar example of a 4-regular 4-edge-connected graph G where 3
divides e(G) but G does not have an S3-decomposition. This led Barát and Thomassen [2], who knew
of this example, to conjecture in 2006 that every planar 4-regular 4-edge-connected graph G where
3 divides e(G) has an S3-decomposition. Unfortunately in the following year, Lai presented an infinite
family of clever counterexamples (replicated in Fig. 1 on the right) to this nice conjecture [10].

Given that a typical d-regular graph is d-edge-connected, a natural setting in which to study these
questions is that of random regular graphs. We utilize the configuration model (also known as the
pairing model) introduced by Bollobás [4]. Let d ≥ 1 and dn be even; we take a total of dn points and
partition them into n cells each consisting of exactly dpoints. Any perfectmatching of dn

2 pairs of points
is said to be a configuration, also known as a pairing. Each configuration corresponds to a multigraph
(possibly with loops) where the cells are vertices and the pairs are edges. We denote the uniform
probability space of configurations by Pn,d. In the configuration model, we choose an element of Pn,d
uniformly at random and discard the result if the corresponding d-regular multigraph has loops or
parallel edges. This was shown to be equivalent to choosing a d-regular (simple) graph on n vertices
uniformly at random (c.f. Wormald’s survey paper [17] for more details).

Observe that in any simple 4-regular graph G, an orientation of the edges of G in which every
in-degree is either 4 or 1 (alternatively every out-degree is either 0 or 3) is equivalent to an S3-
decomposition, that is a decomposition of the edges ofG into copies of S3; namely, the verticeswith out-
degree 3 are the centers of the stars formedby their out-edges. In light of this,we consider orientations
of the edges of a configuration where the out-degree of every cell is 0 or 3, where the out-degree of a
cell is defined to be the number of points in the cell that are the tail of some edge in the orientation.
We call such an orientation a (3, 0)-orientation.

The main result of this paper is as follows. Note that all asymptotics in this article are as n tends to
infinity along positive integers divisible by 3.

Theorem 1.2. A configuration in Pn,4 has a (3, 0)-orientation asymptotically almost surely, provided that
n is divisible by 3.

Any 4-regular (simple) graph G on n vertices corresponds to exactly (4!)n = 24n configurations
in Pn,4. Because each such graph corresponds to the same number of configurations, it follows that G
is a (uniformly) random 4-regular (simple) graph in the configuration model. The probability that a
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