A note on diameter-Ramsey sets

Jan Corsten, Nóra Frankl

Department of Mathematics, LSE, Houghton St., London WC2A 2AE, UK

A R TICLE INFO

Article history:
Received 1 October 2017
Accepted 15 February 2018
Available online 10 March 2018

Abstract

A finite set $A \subset \mathbb{R}^{d}$ is called diameter-Ramsey if for every $r \in \mathbb{N}$, there exists some $n \in \mathbb{N}$ and a finite set $B \subset \mathbb{R}^{n}$ with $\operatorname{diam}(A)=$ $\operatorname{diam}(B)$ such that whenever B is coloured with r colours, there is a monochromatic set $A^{\prime} \subset B$ which is congruent to A. We prove that sets of diameter 1 with circumradius larger than $1 / \sqrt{2}$ are not diameter-Ramsey. In particular, we obtain that triangles with an angle larger than 135° are not diameter-Ramsey, improving a result of Frankl, Pach, Reiher and Rödl. Furthermore, we deduce that there are simplices which are almost regular but not diameter-Ramsey.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this note, we discuss questions related to Euclidean Ramsey theory, a field introduced in [1] by Erdős, Graham, Montgomery, Rothschild, Spencer and Straus. A finite set $A \subset \mathbb{R}^{d}$ is called Ramsey if for every $r \in \mathbb{N}$, there exists some $n \in \mathbb{N}$ such that in every colouring of \mathbb{R}^{n} with r colours, there is a monochromatic set $A^{\prime} \subset \mathbb{R}^{n}$ which is congruent to A. The problem of classifying which sets are Ramsey has been widely studied and is still open (see [3] for more details).

The diameter of a set $P \subset \mathbb{R}^{d}$ is defined by $\operatorname{diam}(P):=\sup \{\|x-y\|: x, y \in P\}$, where $\|\cdot\|$ denotes the Euclidean norm. Recently, Frankl, Pach, Reiher and Rödl [2] introduced the following stronger property.

Definition 1.1. A finite set $A \subset \mathbb{R}^{d}$ is called diameter-Ramsey if for every $r \in \mathbb{N}$, there exists some $n \in \mathbb{N}$ and a finite set $B \subset \mathbb{R}^{n}$ with $\operatorname{diam}(A)=\operatorname{diam}(B)$ such that whenever B is coloured with r colours, there is a monochromatic set $A^{\prime} \subset B$ which is congruent to A.

It follows from the definition that every diameter-Ramsey set is Ramsey. A set $A \subset \mathbb{R}^{d}$ is called spherical, if it lies on some d-dimensional sphere and the circumradius of A, denoted by $\operatorname{cr}(A)$, is the radius of the smallest sphere containing A. (Note that if A is spherical and is not contained in a proper

[^0]subspace of \mathbb{R}^{d}, then there is a unique sphere that contains it.) In [1] it was proved that every Ramsey set must be spherical. Our main result states that every diameter-Ramsey set must also have a small circumradius.

Theorem 1.2. If $A \subset \mathbb{R}^{d}$ is a finite, spherical set with circumradius strictly larger than $\operatorname{diam}(A) / \sqrt{2}$, then A is not diameter-Ramsey.

Frankl, Pach, Reiher and Rödl [2, Theorems 3 and 4] proved that acute and right-angled triangles are diameter-Ramsey, while triangles having an angle larger than 150° are not. Theorem 1.2 implies the following improvement.

Corollary 1.3. Triangles with an angle larger than 135° are not diameter-Ramsey.
Let us call a d-simplex $A=\left\{p_{1}, \ldots, p_{d+1}\right\} \varepsilon$-almost regular if

$$
\frac{1}{\binom{d+1}{2}} \sum_{1 \leq i<j \leq d+1} \operatorname{diam}(A)^{2}-\left\|p_{i}-p_{j}\right\|^{2} \leq \varepsilon \cdot \operatorname{diam}(A)^{2} .
$$

In [2, Theorem 6, Lemma 4.9] it was further proved that ε-almost regular simplices are diameterRamsey for every $\varepsilon \leq 1 /\binom{d+1}{2}$. This is a rather small class of simplices since $1 /\binom{d+1}{2}$ tends to zero, but another corollary of Theorem 1.2 shows that one cannot hope for much more.

Corollary 1.4. For every $d \in \mathbb{N}$ and every $\varepsilon>\sqrt{d} /\binom{d+1}{2}$, there is an ε-almost regular d-simplex which is not diameter-Ramsey.

For $d \in \mathbb{N}$ and $r \geq 0$, we denote the closed d-dimensional ball of radius r centred at the origin by $B_{d}(r)$. We will deduce Theorem 1.2 from the following result.

Theorem 1.5. For every finite, spherical set $A \subset \mathbb{R}^{d}$ and every positive number $r<\operatorname{cr}(A)$, there is some $k=k(A, r) \in \mathbb{N}$ such that the following holds. For every $D \in \mathbb{N}$, there is a colouring of $B_{D}(r)$ with k colours and with no monochromatic, congruent copy of A.

A result of Matous̆ek and Rödl [5] shows that the conclusion of Theorem 1.5 does not hold whenever $r>\operatorname{cr}(A)$. We do not know what happens when $r=\operatorname{cr}(A)$.

Remark 1.6. After completing this work, we have learnt that Theorem 1.2 has independently been proved by Frankl, Pach, Reiher and Rödl, with a similar proof (János Pach, private communication).

2. Proofs

2.1. Proof of Theorem 1.5

Fix some finite, spherical $A \subset \mathbb{R}^{d}$ and some positive number $r<\operatorname{cr}(A)$. The following claim is the key step of the proof.

Claim 2.1. There exists a constant $c=c(A, r)>0$ such that for every $D \in \mathbb{N}$ and for every congruent copy A^{\prime} of A in $B_{D}(r)$ we have $\max _{x, y \in A^{\prime}}(\|x\|-\|y\|) \geq c$.

Proof. First observe that it is sufficient to prove the claim for $D=d+1$. For $D<d+1$, this follows immediately from $B_{D}(r) \subset B_{d+1}(r)$, and for $D>d+1$ we can consider the at most ($d+1$)-dimensional subspace spanned by the vertices of A^{\prime} and the origin.

Let $E=\left\{e: A \rightarrow B_{D}(r)\right\} \subset B_{D}(r)^{|A|}$ be the set of all embeddings of A to B_{D}. It is easy to see that, if $e_{1}, e_{2}, \ldots \in E$ and the pointwise limit $e:=\lim _{n} e_{n}$ exists, then $e \in E$. Therefore, E is a closed subset of a compact metric space and hence E is compact as well. Define $f: E \rightarrow \mathbb{R}$ by

$$
f(e):=\max _{x, y \in e(A)}(\|x\|-\|y\|)
$$

https://daneshyari.com/en/article/8903576

Download Persian Version:

https://daneshyari.com/article/8903576

Daneshyari.com

[^0]: E-mail addresses: j.corsten@lse.ac.uk (J. Corsten), n.frankl@lse.ac.uk (N. Frankl).

