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a b s t r a c t

A finite set A ⊂ Rd is called diameter-Ramsey if for every r ∈ N,
there exists some n ∈ N and a finite set B ⊂ Rn with diam(A) =

diam(B) such that whenever B is coloured with r colours, there is
a monochromatic set A′

⊂ B which is congruent to A. We prove
that sets of diameter 1 with circumradius larger than 1/

√
2 are not

diameter-Ramsey. In particular, we obtain that triangles with an
angle larger than 135◦ are not diameter-Ramsey, improving a result
of Frankl, Pach, Reiher and Rödl. Furthermore,we deduce that there
are simplices which are almost regular but not diameter-Ramsey.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this note, we discuss questions related to Euclidean Ramsey theory, a field introduced in [1] by
Erdős, Graham, Montgomery, Rothschild, Spencer and Straus. A finite set A ⊂ Rd is called Ramsey if
for every r ∈ N, there exists some n ∈ N such that in every colouring of Rn with r colours, there
is a monochromatic set A′

⊂ Rn which is congruent to A. The problem of classifying which sets are
Ramsey has been widely studied and is still open (see [3] for more details).

The diameter of a set P ⊂ Rd is defined by diam(P) := sup{∥x − y∥ : x, y ∈ P}, where ∥·∥ denotes
the Euclidean norm. Recently, Frankl, Pach, Reiher and Rödl [2] introduced the following stronger
property.

Definition 1.1. A finite set A ⊂ Rd is called diameter-Ramsey if for every r ∈ N, there exists some
n ∈ N and a finite set B ⊂ Rn with diam(A) = diam(B) such that whenever B is coloured with r
colours, there is a monochromatic set A′

⊂ B which is congruent to A.

It follows from the definition that every diameter-Ramsey set is Ramsey. A set A ⊂ Rd is called
spherical, if it lies on some d-dimensional sphere and the circumradius of A, denoted by cr(A), is the
radius of the smallest sphere containing A. (Note that if A is spherical and is not contained in a proper
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subspace of Rd, then there is a unique sphere that contains it.) In [1] it was proved that every Ramsey
set must be spherical. Our main result states that every diameter-Ramsey set must also have a small
circumradius.

Theorem 1.2. If A ⊂ Rd is a finite, spherical set with circumradius strictly larger than diam(A)/
√
2, then

A is not diameter-Ramsey.

Frankl, Pach, Reiher and Rödl [2, Theorems 3 and 4] proved that acute and right-angled triangles
are diameter-Ramsey, while triangles having an angle larger than 150◦ are not. Theorem 1.2 implies
the following improvement.

Corollary 1.3. Triangles with an angle larger than 135◦ are not diameter-Ramsey.

Let us call a d-simplex A = {p1, . . . , pd+1} ε-almost regular if
1(d+1
2

) ∑
1≤i<j≤d+1

diam(A)2 −
pi − pj

2
≤ ε · diam(A)2.

In [2, Theorem 6, Lemma 4.9] it was further proved that ε-almost regular simplices are diameter-
Ramsey for every ε ≤ 1/

(d+1
2

)
. This is a rather small class of simplices since 1/

(d+1
2

)
tends to zero, but

another corollary of Theorem 1.2 shows that one cannot hope for much more.

Corollary 1.4. For every d ∈ N and every ε >
√
d/

(d+1
2

)
, there is an ε-almost regular d-simplex which is

not diameter-Ramsey.

For d ∈ N and r ≥ 0, we denote the closed d-dimensional ball of radius r centred at the origin by
Bd(r). We will deduce Theorem 1.2 from the following result.

Theorem 1.5. For every finite, spherical set A ⊂ Rd and every positive number r < cr(A), there is some
k = k(A, r) ∈ N such that the following holds. For every D ∈ N, there is a colouring of BD(r)with k colours
and with no monochromatic, congruent copy of A.

A result ofMatous̆ek andRödl [5] shows that the conclusionof Theorem1.5 does not holdwhenever
r > cr(A). We do not know what happens when r = cr(A).

Remark 1.6. After completing this work, we have learnt that Theorem 1.2 has independently been
proved by Frankl, Pach, Reiher and Rödl, with a similar proof (János Pach, private communication).

2. Proofs

2.1. Proof of Theorem 1.5

Fix some finite, spherical A ⊂ Rd and some positive number r < cr(A). The following claim is the
key step of the proof.

Claim 2.1. There exists a constant c = c(A, r) > 0 such that for every D ∈ N and for every congruent
copy A′ of A in BD(r) we have maxx,y∈A′ (∥x∥ − ∥y∥) ≥ c.

Proof. First observe that it is sufficient to prove the claim for D = d + 1. For D < d + 1, this follows
immediately from BD(r) ⊂ Bd+1(r), and forD > d+1we can consider the at most (d+1)-dimensional
subspace spanned by the vertices of A′ and the origin.

Let E = {e : A → BD(r)} ⊂ BD(r)|A| be the set of all embeddings of A to BD. It is easy to see that, if
e1, e2, . . . ∈ E and the pointwise limit e := limnen exists, then e ∈ E. Therefore, E is a closed subset of
a compact metric space and hence E is compact as well. Define f : E → R by

f (e) := max
x,y∈e(A)

(∥x∥ − ∥y∥) .
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