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We prove that asymptotically almost surely, the random Cayley
sum graph over a finite abelian group G has edge density close to
the expected one on every induced subgraph of size at least logc |G |,
for any fixed c > 1 and |G | large enough.
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1. Introduction

Let A be a subset of an additively written group G . We denote by Cay(A,G) the Cayley sum graph
induced by A on G , which is the directed graph on the vertex set G in which (x, y) ∈ G × G is an
edge if and only if x + y ∈ A (x = y is allowed). Such graphs are classical combinatorial objects, see,
e.g. [2]. Green [3] initiated the study of the random Cayley sum graph, considering finite groups G and
selecting A at randomby choosing each x ∈ G to lie in A independently and at randomwith probability
1/2. General random graphs are considered in [1]. Results about random Cayley sum graphs can be
found, for example, in [3,4,7,6]. R. Mrazović [7] proved the following theorem.

Theorem 1. Let G be a finite group andw : N → R be a growing function that tends to infinity. Let A ⊂ G
be a random subset obtained by putting every element of G into A independently with probability 1

2 . Then
with probability 1 − o(1), for all sets X, Y ⊂ G with

|X | ≥ w(|G |) log|G | and |Y | ≥ w(|G |)log2|G |

one has∑
x∈X

∑
y∈Y

A(x + y) =
1
2
|X ||Y | + o(|X ||Y |), (|G | → ∞), (1)

where the rate of convergence implied by the o-notation depends only on w.

E-mail addresses: konyagin@mi.ras.ru (S.V. Konyagin), ishkredov@mi.ras.ru (I.D. Shkredov).

https://doi.org/10.1016/j.ejc.2017.11.009
0195-6698/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ejc.2017.11.009
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejc.2017.11.009&domain=pdf
mailto:konyagin@mi.ras.ru
mailto:ishkredov@mi.ras.ru
https://doi.org/10.1016/j.ejc.2017.11.009


62 S.V. Konyagin, I.D. Shkredov / European Journal of Combinatorics 70 (2018) 61–74

In Theorem1 and throughout, for a subset A ⊆ G weuse the same letter to denote its characteristic
function A : G → {0, 1}.

Theorem 1 shows that with high probability, the edge density of the random Cayley sum graph on
all induced subgraphs of size at least log2+ε

|G |, is close to 1/2.
In the same paper Mrazović [7] showed that there is no C such that the assumption of Theorem 1

can be relaxed to min{|X |, |Y |} ≥ C log|G | log log|G |.
Using some tools from Additive Combinatorics, we show that Theorem 1 can be improved.

Theorem2. Let G be a finite abelian group andw : N → R be a growing function that tends to infinity. Let
A ⊂ G be a random subset obtained by putting every element of G into A independently with probability
1
2 . Then with probability 1 − o(1), for all sets X, Y ⊂ G with

|X | ≥ w(|G |) log|G |(log log|G |)2, |Y | ≥ w(|G |) log|G |(log log|G |)10,

one has∑
x∈X

∑
y∈Y

A(x + y) =
1
2
|X ||Y | + o(|X ||Y |) (|G | → ∞),

where the rate of convergence implied by the o-notation depends only on w.

Notice that the lower bounds in Theorem2 can be improved by double-logarithmic factors atmost.
Let us say a few words about the proof.
It is shown in [7] that if for some X, Y the sum in the left-hand side of (1) deviates significantly

from 1
2 |X | |Y |, then the common energy (see the definition in the next section) of X and Y must be

close to the trivial upper bound |X | |Y |min{|X |, |Y |}. Mrazović used a random choice to avoid such
a situation (see details in [7]). Using structural results from [9,11], we add one more twist to his
argument, proving that X and Y possess large, well–structured subsets. Hence, the number of such
pairs of sets is much smaller than the total number of all possible pairs of sets. This is what ultimately
allows us to relax the requirement on the sizes of X and Y .

First we consider the case of elementary abelian 2-groups and prove Theorem 2 in this situation
(with the lower bound min{|X |, |Y |} ≥ log3/2+ε

|G |) using a variation of the argument from [7]. For
such groups the proof is simpler and more transparent. For the general case see Sections 4 and 5.

We thank Rudi Mrazović and Mikhail Gabdullin for the fruitful discussions, and the reviewers for
their useful remarks.

2. Definitions and preliminary results

Let G be an abelian group. The additive energy E(A, B) between subsets A, B ⊆ G is (see [13])

E(A, B) = |{(a1, a2, b1, b2) ∈ A × A × B × B : a1 + b1 = a2 + b2}|.

By A
⨆

B denote the union of two disjoint sets A, B.
Recall a simple lemma, see, e.g., [10, Lemma 12].

Lemma 3. For any finite sets X, Y , Z ⊂ G one has

E(X ∪ Y , Z)1/2 ≤ E(X, Z)1/2 + E(Y , Z)1/2,

and for disjoint union of X and Y the following holds

E(X ⊔ Y , Z) ≥ E(X, Z) + E(Y , Z).

Now let us recall the notions of dissociativity and (additive) dimension of a set. A finite set Λ ⊂ G
is called dissociated if an equality of the form∑

λ∈Λ

ελλ = 0
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