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a b s t r a c t

We say a family of subsets of {1, 2, . . . , n} is antipodal if it is closed
under taking complements.We prove a best-possible isoperimetric
inequality for antipodal families of subsets of {1, 2, . . . , n} (of any
size). Our inequality implies that for any k ∈ N, among all such
families of size 2k, a family consisting of the union of two antipo-
dal (k − 1)-dimensional subcubes has the smallest possible edge
boundary.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Isoperimetric questions are classical objects of study in mathematics. In general, they ask for the
minimum possible ‘boundary-size’ of a set of a given ‘size’, where the exact meaning of these words
varies according to the problem.

The classical isoperimetric problem in the plane asks for the minimum possible perimeter of a
shape in the plane with area 1. The answer, that it is best to take a circle, was ‘known’ to the ancient
Greeks, but it was not until the 19th century that this was proved rigorously, byWeierstrass in a series
of lectures in the 1870s in Berlin.

The isoperimetric problem has been solved for n-dimensional Euclidean space En, for the
n-dimensional unit sphere Sn

:= {x ∈ Rn+1
:

∑n+1
i=1 x

2
i = 1}, and for n-dimensional hyperbolic

space Hn (for all n), with the natural notion of boundary in each case, corresponding to surface area
for sufficiently ‘nice’ sets. (For background on isoperimetric problems, we refer the reader to the book
of Burago and Zalgaller [2], the surveys of Osserman [6] and of Ros [8], and the references therein.)
One of the most well-known open problems in the area is to solve the isoperimetric problem for
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n-dimensional real projective space RPn, or equivalently for antipodal subsets of the n-dimensional
sphere Sn. (We say a subset A ⊆ Sn is antipodal if A = −A.) The conjecture can be stated as follows.

Conjecture 1. Let n ∈ N with n ≥ 2, and let µ denote the n-dimensional Hausdorff measure on Sn. Let
A ⊆ Sn be open and antipodal. Then there exists a set B ⊆ Sn such that µ(B) = µ(A), σ (B) ≤ σ (A), and

B = {x ∈ Sn
:

r∑
i=1

x2i > a}

for some r ∈ [n] and some a ∈ R.

Here, ifA ⊆ Sn is an open set, then σ (A) denotes the surface area ofA, i.e. the (n−1)-dimensional
Hausdorff measure of the topological boundary of A.

Only the cases n = 2 and n = 3 of Conjecture 1 are known, the former being ‘folklore’ and the
latter being due to Ritoré and Ros [7]. In this paper, we prove a discrete analogue of Conjecture 1.

First for some definitions and notation. If X is a set, wewriteP(X) for the power-set of X . For n ∈ N,
we write [n] := {1, 2, . . . , n}, and we let Qn denote the graph of the n-dimensional discrete cube,
i.e. the graph with vertex-set P([n]), where x and y are joined by an edge if |x∆y| = 1. If A ⊆ P([n]),
we write ∂A for the edge-boundary ofA in the discrete cube Qn, i.e. ∂A is the set of edges of Qn which
join a vertex in A to a vertex outside A. We write e(A) for the number of edges of Qn which have
both end-vertices in A. We say that two families A,B ⊆ P([n]) are isomorphic if there exists an
automorphism σ of Qn such that B = σ (A). Clearly, if A and B are isomorphic, then |∂A| = |∂B|.

The binary ordering on P([n]) is defined by x < y iff max(x∆y) ∈ y. An initial segment of the binary
ordering on P([n]) is the set of the first k (smallest) elements of P([n]) in the binary ordering, for some
k ≤ 2n. For any k ≤ 2n, we write In,k for the initial segment of the binary ordering on P([n]) with
size k.

Harper [3], Lindsay [5], Bernstein [1] and Hart [4] solved the edge isoperimetric problem for Qn,
showing that among all subsets of P([n]) of given size, initial segments of the binary ordering on
P([n]) have the smallest possible edge-boundary.

In this paper, we consider the edge isoperimetric problem for antipodal sets in Qn. If x ⊆ [n], we
define x := [n] \ x, and if A ⊆ P([n]), we define A := {x : x ∈ A}. We say a family A ⊆ P([n]) is
antipodal ifA = A. This notion is of course the natural analogue in the discrete cube of antipodality in
Sn; indeed, identifying P([n]) with {−1, 1}n ⊆

√
n · Sn−1

⊆ Rn in the natural way, x ↦→ x corresponds
to the antipodal map v ↦→ −v.

We prove the following best-possible edge isoperimetric inequality for antipodal families.

Theorem 2. Let A ⊆ P([n]) be antipodal. Then

|∂A| ≥ |∂(In,|A|/2 ∪ In,|A|/2)|.

We remark that Theorem 2 implies that if A ⊆ P([n]) is antipodal with |A| = 2k for some
k ∈ [n − 1], then |∂A| ≥ |∂(Sk−1 ∪ Sk−1)|, where Sk−1 := In,2k−1 = {x ⊆ [n] : x ⊆ [k − 1]} is
a (k − 1)-dimensional subcube. In other words, a union of two antipodal subcubes has the smallest
possible edge-boundary, over all antipodal sets of the same size.

To prove Theorem 2, it will be helpful for us to rephrase it slightly. Firstly, observe that for any
A ⊆ P([n]), we have ∂(Ac) = ∂A, and that for any k ≤ 2n−1, the family (In,k ∪ In,k)c is isomorphic
to the family In,2n−1−k ∪ In,2n−1−k, via the isomorphism x ↦→ x∆{n}. Hence, by taking complements, it
suffices to prove Theorem 2 in the case |A| ≤ 2n−1.

Secondly, for any family A ⊆ P([n]), we have

2e(A) + |∂A| = n|A|, (1)

so Theorem 2 is equivalent to the statement that if A ⊆ P([n]) is antipodal, then

e(A) ≤ e(In,|A|/2 ∪ In,|A|/2).

Note also that if B is an initial segment of the binary ordering on P([n]) with |B| ≤ 2n−2, then
B ⊆ {x ⊆ [n] : x ∩ {n − 1, n} = ∅} and B ⊆ {x ⊆ [n] : {n − 1, n} ⊆ x}, so B ∩ B = ∅
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