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a b s t r a c t

Here we examine some Erdős–Falconer-type problems in vector
spaces over finite fields involving right angles. Our main goals are
to show that

(a) a subset A ⊂ Fd
q of size ≥ cq

d+2
3 contains three points which

generate a right angle, and
(b) a subset A ⊂ Fd

q of size ≥ Cq
d+2
2 contains two points which

generate a right angle with the vertex at the origin.
We will also prove that (b) is sharp up to constants and provide
some partial results for similar problems related to spread and
collinear triples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we will be looking at some extremal problems in combinatorial geometry similar
to those proposed by Erdős and Falconer, but in the setting of finite fields rather than in Euclidean
space. Throughout, q will be a power of an odd prime, and we will denote the field with q elements
by Fq. We would like to determine how large a subset of Fd

q (with q much larger than d) needs to be
to guarantee that the set contains three points which form a right angle. We will also make some
observations about extremal problems regarding ‘‘spread’’. Spread is essentially a finite field analog
of the Euclidean angle. Whenwe say that a triple (a, b, c) ‘‘generates’’ an angle (or spread) θ , wemean
that the angle between the vectors a − b and c − b is θ . This is, in a way, an extension of the right
angle problem, because to say that a triple ‘‘generates a right angle’’ is roughly equivalent to saying
that the spread generated by the triple is 1. These notions will be explained much more thoroughly
in Section 6. Finally, we will ask how large a subset of Fd

q needs to be to guarantee that three points in
that subset are collinear and provide relatively trivial bounds on this problem, not coming particularly
close to a decisive answer to the question.
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This paper was motivated by a paper of Harangi et al. which looked at the same problems, as well
as many others, in Rd. By looking at the same problems in a different setting, we hope to improve our
understanding of the relation between the geometric structure of Rd and Fd

q .

2. Main theorems

Definition 2.1. We say that an ordered triple of points (x, y, z) ∈ Fd
q × Fd

q × Fd
q forms a right angle if

x, y, and z are distinct, and the vectors x − y and z − y have dot product 0.

Theorem 2.2. If A, B ⊂ Fd
q , A ∩ B = ∅, and |A|

2
|B| ≥ 4qd+2, then there are x, y ∈ A and z ∈ B so that

(x, y, z) forms a right angle.

Following immediately from the theorem, we have the following corollary:

Corollary 2.3. If A ⊂ Fd
q and |A| ≥ 4q

d+2
3 then A contains a right angle.

That is, given a set A, wemay decompose it into disjoint sets A′ and B′ of roughly equal size and then
apply the theorem. We will see that the bound from 2.2 is best possible up to the implied constant. It
is not known whether the result is improvable in the form of 2.3.

We will also examine the problem of existence of right angles whose vertex is fixed at the origin:

Theorem 2.4. If A ⊂ Fd
q and |A| ≥ 4q

d+2
2 , then there are x, y ∈ A so that x · y = 0. Moreover, if q is a

prime, then there exists a subset B ⊂ Fd
q so that |B| = Ω(q

d+2
2 ) but {x, y ∈ B : x · y = 0} = ∅.

3. Comparison with Euclidean analog

Perhaps the most interesting aspect of these results are how they differ from those found in [7]. In
their paper, Harangi et al. solve Euclidean versions of these problems. There they pose the problem in
two different ways: For a given angle, how large must a set in Rd be to guarantee that
(1) that angle is generated by that set?
(2) an angle with size within δ of the given angle is generated by that set?

When we say ‘‘how large’’, we are referring to the Hausdorff dimension of the set. In the paper
they discover that 90◦ angles are a singular case. In the sense of question 1, the critical dimension
for 90◦ angles is between d

2 and d+1
2 . That is, there are examples of sets of Hausdorff dimension

arbitrarily close to d
2 which contain no 90◦ angles, while any compact set with Hausdorff dimension

larger than d+1
2 must contain a 90◦ angle (which they prove rather concisely in the paper). For 0

and 180◦, the critical dimension is d − 1 (because of the (d − 1)-sphere), while for other angles only
partial answers exist. Question 2 is completely resolved in this paper, where they find that a set of
Hausdorff dimension 1 always has an angle very close to 90◦, while a set of lower dimension need
not. It is known that any sufficiently large finite set of points contains three points at an angle as close
to 180◦ as desired (and therefore close to 0◦ as well) (see [6]). Interestingly, 60◦and 120◦ angles
also have a separate result that depends on δ. For any other given angle, however, a set of Hausdorff
dimension that increases to∞ as d goes to∞ can be constructed so that a neighborhood of that angle
is avoided.

In Euclidean space, Hausdorff dimension is a natural way to classify the dimension of an arbitrary
set. The best analog to this classification in vector spaces over finite fields is to think of the dimension
of a set S as≈ logq(|S|). This is why, in the finite field setting, the quantity we are most interested in is
the exponentα in |S| = cqα . In extremal geometry, problems that can be solved in Euclidean space can
often be solved in a similar manner over finite fields. Consequently, one might expect the exponent
in the finite field setting to match the Hausdorff dimension in the Euclidean setting. This is why the
case of right angles is interesting here. We find that the critical dimension in vector spaces over finite
fields is bounded above by d+2

3 , which is significantly different from the (question 1) threshold found
in [7]. As far as the Euclidean analog of Theorem 2.2, consider the set (0, ∞) × · · · × (0, ∞) ⊂ Rd.
The dot product of any two elements in this set must be positive, and the set clearly has Hausdorff
dimension d, so this also presents a discrepancy between the continuous and finite settings.
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