

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Highly connected subgraphs of graphs with given independence number

European Journal of Combinatorics

Shinya Fujita^a, Henry Liu^b, Amites Sarkar^c

^a International College of Arts and Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan

^b School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

^c Department of Mathematics, Western Washington University, 516 High Street, Bellingham, WA 98225,

USA

ARTICLE INFO

Article history: Received 9 December 2016 Accepted 19 January 2018

ABSTRACT

Let *G* be a graph on *n* vertices with independence number α . We prove that if *n* is sufficiently large $(n \ge \alpha^2 k + 1 \text{ will do})$, then *G* always contains a *k*-connected subgraph on at least n/α vertices. The value of n/α is sharp, since *G* might be the disjoint union of α equally-sized cliques. For $k \ge 3$ and $\alpha = 2$, 3, we shall prove that the same result holds for $n \ge 4(k-1)$ and $n \ge \frac{27(k-1)}{4}$ respectively, and that these lower bounds on *n* are sharp.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

When can we find a large highly connected subgraph of a given graph *G*? A classical theorem due to Mader [10] (see also [6]) states that if *G* has average degree at least 4*k*, then *G* contains a *k*-connected subgraph *H*. Mader's theorem does not give a lower bound on the order of *H*. If *G* is dense (for instance if $\delta(G)$, the minimum degree of *G*, is bounded below), it is natural to expect that *G* in fact contains a *large* highly connected subgraph. A result of Bohman et al. [1] implies that for every graph *G* of order *n* with $\delta(G) \ge 4\sqrt{kn}$, the vertex set V(G) admits a partition such that every part induces a *k*-connected subgraph of order at least $\sqrt{kn/2}$. In a similar direction, by a recent result of Borozan et al. [4], we know that every graph *G* of order *n* with $\delta(G) \ge \sqrt{c(k-1)n}$ contains a *k*-connected subgraph of order *n* graph *G* of order *n* with $\delta(G) \ge \sqrt{c(k-1)n}$ contains a *k*-connected subgraph, say of order *cn*? Along these lines, Bollobás and Gyárfás [3] conjectured that for any graph *G* of order at least

https://doi.org/10.1016/j.ejc.2018.01.004

0195-6698/© 2018 Elsevier Ltd. All rights reserved.

E-mail addresses: fujita@yokohama-cu.ac.jp (S. Fujita), liaozhx5@mail.sysu.edu.cn (H. Liu), amites.sarkar@wwu.edu (A. Sarkar).

n-2(k-1). Since either *G* or \overline{G} is a dense graph, we might expect to find a very large highly connected subgraph in one of them. This conjecture was settled affirmatively for $n \ge 13k - 15$ by Liu, Morris and Prince [9], and then for n > 6.5(k - 1) by Fujita and Magnant [8].

Suppose next that $\delta(G) > cn$. Can we find a *k*-connected subgraph of G on at least *cn* vertices? It turns out that the answer is "yes" for sufficiently large $n \ge n_0(c, k)$, and in fact a simple argument gives even more – there exists such a subgraph on at least n/m vertices, where $m = \lfloor 1/c \rfloor$. For instance, if c > 1/2, then G itself is k-connected. To see the assertion, suppose that G itself is not k-connected. Then G can be split into two "large" pieces with a separating set of size at most k - 1. Both pieces must have order at least cn - (k - 1) + 1, so as not to violate the minimum degree condition. If one of the pieces does not induce a k-connected subgraph, then we split the subgraph, to obtain another two large pieces and a separating set of size at most k - 1. Now, each of the three large pieces has order at least cn - 2(k - 1) + 1. We repeat this procedure, as long as one of the existing large pieces does not induce a k-connected subgraph. After t steps, we have t + 1 large pieces, each with order at least cn - t(k-1) + 1. If $m \le t = O_n(1)$, then there is a large piece with at most $\frac{n}{m+1} \ll cn$ vertices, which is a contradiction. Thus, the procedure must terminate after $t \le m - 1$ steps, giving us $t + 1 \le m$ large pieces, say X_1, \ldots, X_t . Finally, let C be the set of accumulated separating vertices, so that $|C| \le t(k-1)$. We can "redistribute" the vertices of C to the X_i . The minimum degree condition on G implies that every vertex of C must have at least k neighbours in one of the X_i . Therefore, we can write $C = C_1 \cup \cdots \cup C_t$ such that, every vertex of C_i has at least k neighbours in X_i , for every $1 \le i \le t$. So we are done, since some set $X_i \cup C_i$ induces a k-connected subgraph on at least n/m > cn vertices. Furthermore, the value of n/m for the order of the largest k-connected subgraph is sharp, if k > 4. To see this, we can let G be the union of m cliques, each with $\lceil n/m \rceil + 1$ vertices, and ordered linearly in such a way that any two successive cliques intersect in at most three vertices, with non-consecutive cliques being disjoint.

Here, we instead focus on another graph parameter which forces *G* to be dense, but which does not immediately yield a trivial bound for our problem. Such a parameter is the independence number $\alpha(G)$. If a graph *G* has independence number α , then its complement \overline{G} has clique number α , so that, by Turán's theorem, \overline{G} has average degree at most around $(1 - 1/\alpha)n$, and so *G* has average degree at least around n/α . It is natural to conjecture that this average degree condition automatically implies that *G* has a *k*-connected subgraph on at least n/α vertices. However, this conjecture is false. Indeed, for the cases $\alpha = 2$ and $\alpha = 3$, our graphs in Constructions 5 and 7 (see Section 3) have average degrees (19/32)*n* and (307/729)*n*, and no *k*-connected subgraphs of orders n/2 and n/3 respectively.

Structures in graphs with fixed independence number are widely studied. In particular, the problem of finding a large subgraph with certain properties in a graph with fixed independence number has received much attention. For example, a famous theorem due to Chvátal and Erdős [5] from 1972 states that any graph *G* on at least three vertices, whose independence number $\alpha(G)$ is at most its connectivity $\kappa(G)$, contains a Hamiltonian cycle. Motivated by this, Fouquet and Jolivet [7] conjectured in 1976 that if, instead, *G* is a *k*-connected graph of order *n* with $\alpha(G) = \alpha \ge k$, then *G* has a cycle with length at least $\frac{k(n+\alpha-k)}{\alpha}$. Recently, this long standing conjecture was settled affirmatively by O et al. [11].

In this paper, we consider the following question. Fix $k \ge 1$, and let *G* be a graph on *n* vertices with independence number α . Can we always find a large *k*-connected subgraph of *G*? A little thought shows that, if $n \le \alpha k$, then there might be no such subgraph, and if $n \ge \alpha k + 1$, then we are only guaranteed a *k*-connected subgraph of order $\lceil n/\alpha \rceil$, since in both cases *G* might consist of the disjoint union of α cliques, each with either $\lceil n/\alpha \rceil$ or $\lfloor n/\alpha \rfloor$ vertices. Such a graph *G* has the fewest edges among all graphs of independence number α , so it seems that it should be extremal for our problem as well.

In fact, for large *n*, this construction (which we will call the *disjoint clique construction*, or just DCC) is indeed extremal. Specifically, we prove in Theorem 2 that any graph *G* of order $n \ge \alpha^2 k + 1$ and independence number α must have a *k*-connected subgraph of order at least $\lceil n/\alpha \rceil$. However, for smaller values of *n*, this no longer applies. For instance, when $\alpha = 2$ and $k \ge 3$, there is a graph of order n = 4k - 5 and independence number 2 with no *k*-connected subgraph of order at least $\lceil n/2 \rceil$

Download English Version:

https://daneshyari.com/en/article/8903607

Download Persian Version:

https://daneshyari.com/article/8903607

Daneshyari.com