European Journal of Combinatorics 69 (2018) 49-53

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Polynomial expansion and sublinear separators

European Journal of Combinatorics

Louis Esperet^a, Jean-Florent Raymond^{b,c}

^a Univ. Grenoble Alpes, CNRS, G-SCOP, Grenoble, France

^b Institute of Informatics, University of Warsaw, Poland

^c LIRMM, University of Montpellier, France

ARTICLE INFO

Article history: Received 12 May 2017 Accepted 27 September 2017

ABSTRACT

Let C be a class of graphs that is closed under taking subgraphs. We prove that if for some fixed $0 < \delta \leq 1$, every *n*-vertex graph of C has a balanced separator of order $O(n^{1-\delta})$, then any depth-*r* minor (i.e. minor obtained by contracting disjoint subgraphs of radius at most *r*) of a graph in C has average degree $O((r \text{ polylog } r)^{1/\delta})$. This confirms a conjecture of Dvořák and Norin.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For an integer $r \ge 0$, a *depth-r minor* of a graph *G* is a subgraph of a graph that can be obtained from *G* by contracting pairwise vertex-disjoint subgraphs of radius at most *r*. Let d(G) denote the average degree of a graph G = (V, E), i.e. d(G) = 2|E|/|V|. For some function *f*, we say that a class *C* of graphs has *expansion bounded by f* if for any graph $G \in C$ and any integer *r*, any depth-*r* minor of *G* has average degree at most f(r). We say that a class has *bounded expansion* if it has expansion bounded by some function *f*, and *polynomial expansion* if *f* can be taken to be a polynomial.

Classes of bounded expansion play a central role in the study of sparse graphs [7]. From an algorithmic point of view, a very useful property of these classes is that when their expansion is not too large (say subexponential), graphs in the class have sublinear separators. A *separator* in a graph G = (V, E) is a pair of subsets (A, B) of vertices of G such that $A \cup B = V$ and no edge of G has one endpoint in $A \setminus B$ and the other in $B \setminus A$. The separator (A, B) is said to be *balanced* if both $|A \setminus B|$ and $|B \setminus A|$ contain at most $\frac{2}{3}|V|$ vertices. The *order* of the separator (A, B) is $|A \cap B|$.

A class C of graphs is *monotone* if for any graph $G \in C$, any subgraph of G is in C. Dvořák and Norin [5] observed that the following can be deduced from a result of Plotkin, Rao, and Smith [8].

https://doi.org/10.1016/j.ejc.2017.09.003

0195-6698/© 2017 Elsevier Ltd. All rights reserved.

E-mail addresses: louis.esperet@grenoble-inp.fr (L. Esperet), jean-florent.raymond@mimuw.edu.pl (J.-F. Raymond).

Theorem 1 ([5]). Let *C* be a monotone class of graphs with expansion bounded by $r \mapsto c(r + 1)^{1/4\delta-1}$, for some constant c > 0 and $0 < \delta \leq 1$. Then there is a constant *C* such that every n-vertex graph of *C* has a balanced separator of order $Cn^{1-\delta}$.

Dvořák and Norin [5] also proved the following partial converse.

Theorem 2 ([5]). Let *C* be a monotone class of graphs such that for some fixed constants C > 0 and $0 < \delta \leq 1$, every n-vertex graph of *C* has a balanced separator of order $Cn^{1-\delta}$. Then the expansion of *C* is bounded by some function $f(r) = O(r^{5/\delta^2})$.

They conjectured that the exponent $5/\delta^2$ of the polynomial expansion in Theorem 2 could be improved to match (asymptotically) that of Theorem 1.

Conjecture 3 ([5]). There exists a real c > 0 such that the following holds. Let C be a monotone class of graphs such that for some fixed constants C > 0 and $0 < \delta \le 1$, every n-vertex graph of C has a balanced separator of order $Cn^{1-\delta}$. Then the expansion of C is bounded by some function $f(r) = O(r^{c/\delta})$.

In this short note, we prove this conjecture.

Theorem 4. For any C > 0 and $0 < \delta \le 1$, if a monotone class C has the property that every n-vertex graph in C has a balanced separator of order at most $Cn^{1-\delta}$, then C has expansion bounded by the function $f : r \mapsto c_1 \cdot (r+1)^{1/\delta} (\frac{1}{\delta} \log(r+3))^{c_2/\delta}$, for some constants c_1 and c_2 depending only on C.

In particular Conjecture 3 holds for any real number c > 1. The proof of Theorem 4 is given in the next section, and we conclude with some open problems in Section 3.

2. Proof of Theorem 4

We need the following results. The first is a classical connection between balanced separators and tree-width (see [5]).

Lemma 5. Any graph G has a balanced separator of order at most tw(G) + 1.

Dvořák and Norin [4] proved that the following partial converse holds.

Theorem 6 ([4]). If every subgraph of G has a balanced separator of order at most k, then G has tree-width at most 105k.

Note that in our proof of Theorem 4 we could also use the weaker (and easier) result of [1] that under the same hypothesis, *G* has tree-width at most $1+k \log|V(G)|$, but the computation is somewhat less cumbersome if we use Theorem 6 instead.

For a set *S* of vertices in a graph *G*, we let N(S) denote the set of vertices not in *S* with at least one neighbor in *S*. We will use the following result of Shapira and Sudakov [9].

Theorem 7 ([9]). Any graph G contains a subgraph H of average degree $d(H) \ge \frac{255}{256} d(G)$ such that for any set S of at most n/2 vertices of H (where n = |V(H)|), $|N(S)| \ge \frac{1}{2^8 \log n (\log \log n)^2} |S|$.

In fact, we will only need a much weaker version, where the vertex-expansion is of order $\Omega\left(\frac{1}{\operatorname{polylog} n}\right)$ instead of $\Omega\left(\frac{1}{\log n(\log \log n)^2}\right)$.

Finally, we need a result of Chekuri and Chuzhoy [3] on bounded-degree subgraphs of large treewidth in a graph of large tree-width.

Theorem 8 ([3]). There are constants α , β such that for any integer $k \ge 2$, any graph G of tree-width at least k contains a subgraph H of tree-width at least $\alpha k/(\log k)^{\beta}$ and maximum degree 3.

Download English Version:

https://daneshyari.com/en/article/8903621

Download Persian Version:

https://daneshyari.com/article/8903621

Daneshyari.com