Polynomial expansion and sublinear separators

Louis Esperet ${ }^{\text {a }}$, Jean-Florent Raymond ${ }^{\text {b,c }}$

${ }^{\text {a }}$ Univ. Grenoble Alpes, CNRS, G-SCOP, Grenoble, France
${ }^{\mathrm{b}}$ Institute of Informatics, University of Warsaw, Poland
c LIRMM, University of Montpellier, France

A R T I C L E I N F O

Article history:

Received 12 May 2017
Accepted 27 September 2017

Abstract

Let \mathcal{C} be a class of graphs that is closed under taking subgraphs. We prove that if for some fixed $0<\delta \leq 1$, every n-vertex graph of \mathcal{C} has a balanced separator of order $O\left(n^{1-\delta}\right)$, then any depth- r minor (i.e. minor obtained by contracting disjoint subgraphs of radius at most r) of a graph in \mathcal{C} has average degree $O\left((r \text { polylog } r)^{1 / \delta}\right)$. This confirms a conjecture of Dvořák and Norin.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For an integer $r \geq 0$, a depth- r minor of a graph G is a subgraph of a graph that can be obtained from G by contracting pairwise vertex-disjoint subgraphs of radius at most r. Let $d(G)$ denote the average degree of a graph $G=(V, E)$, i.e. $d(G)=2|E| /|V|$. For some function f, we say that a class \mathcal{C} of graphs has expansion bounded by f if for any graph $G \in \mathcal{C}$ and any integer r, any depth- r minor of G has average degree at most $f(r)$. We say that a class has bounded expansion if it has expansion bounded by some function f, and polynomial expansion if f can be taken to be a polynomial.

Classes of bounded expansion play a central role in the study of sparse graphs [7]. From an algorithmic point of view, a very useful property of these classes is that when their expansion is not too large (say subexponential), graphs in the class have sublinear separators. A separator in a graph $G=(V, E)$ is a pair of subsets (A, B) of vertices of G such that $A \cup B=V$ and no edge of G has one endpoint in $A \backslash B$ and the other in $B \backslash A$. The separator (A, B) is said to be balanced if both $|A \backslash B|$ and $|B \backslash A|$ contain at most $\frac{2}{3}|V|$ vertices. The order of the separator (A, B) is $|A \cap B|$.

A class \mathcal{C} of graphs is monotone if for any graph $G \in \mathcal{C}$, any subgraph of G is in \mathcal{C}. Dvořák and Norin [5] observed that the following can be deduced from a result of Plotkin, Rao, and Smith [8].

[^0]Theorem 1 ([5]). Let \mathcal{C} be a monotone class of graphs with expansion bounded by $r \mapsto c(r+1)^{1 / 4 \delta-1}$, for some constant $c>0$ and $0<\delta \leq 1$. Then there is a constant C such that every n-vertex graph of \mathcal{C} has a balanced separator of order $\mathrm{Cn}^{1-\delta}$.

Dvořák and Norin [5] also proved the following partial converse.
Theorem 2 ([5]). Let \mathcal{C} be a monotone class of graphs such that for some fixed constants $C>0$ and $0<\delta \leq 1$, every n-vertex graph of \mathcal{C} has a balanced separator of order $\mathrm{Cn}^{1-\delta}$. Then the expansion of \mathcal{C} is bounded by some function $f(r)=O\left(r^{5 / \delta^{2}}\right)$.

They conjectured that the exponent $5 / \delta^{2}$ of the polynomial expansion in Theorem 2 could be improved to match (asymptotically) that of Theorem 1.

Conjecture 3 ([5]). There exists a real $c>0$ such that the following holds. Let \mathcal{C} be a monotone class of graphs such that for some fixed constants $C>0$ and $0<\delta \leq 1$, every n-vertex graph of \mathcal{C} has a balanced separator of order $\mathrm{Cn}^{1-\delta}$. Then the expansion of \mathcal{C} is bounded by some function $f(r)=O\left(r^{c / \delta}\right)$.

In this short note, we prove this conjecture.

Theorem 4. For any $C>0$ and $0<\delta \leq 1$, if a monotone class \mathcal{C} has the property that every n-vertex graph in \mathcal{C} has a balanced separator of order at most $\mathrm{Cn}^{1-\delta}$, then \mathcal{C} has expansion bounded by the function $f: r \mapsto c_{1} \cdot(r+1)^{1 / \delta}\left(\frac{1}{\delta} \log (r+3)\right)^{c_{2} / \delta}$, for some constants c_{1} and c_{2} depending only on \mathcal{C}.

In particular Conjecture 3 holds for any real number $c>1$. The proof of Theorem 4 is given in the next section, and we conclude with some open problems in Section 3.

2. Proof of Theorem 4

We need the following results. The first is a classical connection between balanced separators and tree-width (see [5]).

Lemma 5. Any graph G has a balanced separator of order at most $\operatorname{tw}(G)+1$.
Dvořák and Norin [4] proved that the following partial converse holds.
Theorem 6 ([4]). If every subgraph of G has a balanced separator of order at most k, then G has tree-width at most 105 k .

Note that in our proof of Theorem 4 we could also use the weaker (and easier) result of [1] that under the same hypothesis, G has tree-width at most $1+k \log |V(G)|$, but the computation is somewhat less cumbersome if we use Theorem 6 instead.

For a set S of vertices in a graph G, we let $N(S)$ denote the set of vertices not in S with at least one neighbor in S. We will use the following result of Shapira and Sudakov [9].

Theorem 7 ([9]). Any graph G contains a subgraph H of average degree $d(H) \geq \frac{255}{256} d(G)$ such that for any set S of at most $n / 2$ vertices of H (where $n=|V(H)|),|N(S)| \geq \frac{1}{2^{8} \log n(\log \log n)^{2}}|S|$.

In fact, we will only need a much weaker version, where the vertex-expansion is of order $\Omega\left(\frac{1}{\text { polylog } n}\right)$ instead of $\Omega\left(\frac{1}{\log n(\log \log n)^{2}}\right)$.

Finally, we need a result of Chekuri and Chuzhoy [3] on bounded-degree subgraphs of large treewidth in a graph of large tree-width.

Theorem 8 ([3]). There are constants α, β such that for any integer $k \geq 2$, any graph G of tree-width at least k contains a subgraph H of tree-width at least $\alpha k /(\log k)^{\beta}$ and maximum degree 3.

https://daneshyari.com/en/article/8903621

Download Persian Version:

https://daneshyari.com/article/8903621

Daneshyari.com

[^0]: E-mail addresses: louis.esperet@grenoble-inp.fr (L. Esperet), jean-florent.raymond@mimuw.edu.pl (J.-F. Raymond).

