A new lower bound for van der Waerden numbers

Thomas Blankenship, Jay Cummings, Vladislav Taranchuk
Department of Mathematics and Statistics, Sacramento State University, United States

ARTICLE INFO

Article history:

Received 3 July 2017
Accepted 13 October 2017
Available online 7 November 2017

Abstract

In this paper we prove a new recurrence relation on the van der Waerden numbers, $w(r, k)$. In particular, if p is a prime and $p \leq k$ then $w(r, k)>p \cdot\left(w\left(r-\left\lceil\frac{r}{p}\right\rceil, k\right)-1\right)$. This recurrence gives the lower bound $w(r, p+1)>p^{r-1} 2^{p}$ when $r \leq p$, which generalizes Berlekamp's theorem on 2-colorings, and gives the best known bound for a large interval of r. The recurrence can also be used to construct explicit valid colorings, and it improves known lower bounds on small van der Waerden numbers.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and history

In 1927, van der Waerden proved that for any positive integers r and k there exists an $N=w(r, k)$ such that every r-coloring of $\{1,2,3, \ldots, N\}$ contains a monochromatic arithmetic progression of length k. As a central function in Ramsey theory and a notoriously difficult one to understand, the growth rate of $w(r, k)$ has received much attention.

Van der Waerden's initial proof gives a monstrous upper bound. In the slowest-growing case, when $r=2$, still the bound is $w(2, k) \leq A(n)$, where $A(n)$ is the Ackermann function. The best known general upper bound is due to Gowers [8], who proved

$$
w(r, k) \leq 2^{2^{r^{2^{2^{k+9}}}}}
$$

In [10] Graham and Solymosi improved this in the case when $k=3$, which in a series of follow-up papers by Bourgain [3], Sanders [17] and Bloom [2] further improved the upper bound to

$$
w(r, 3) \leq 2^{c r(\ln r)^{4}}
$$

[^0]where $c>0$ is an absolute constant. Graham currently offers 1000 USD for an answer as to whether or not $w(2, k)<2^{k^{2}}$.

In 1953, Erdős and Rado [6] proved the lower bound

$$
\sqrt{2(k-1) r^{k-1}} \leq w(r, k)
$$

using a simple counting argument. In 1960, Moser [15] used a constructive approach to improve this bound in the case that r is large relative to k. In particular, he showed that

$$
(k-1) r^{C \ln (r)}<w(r, k)
$$

for some absolute constant C. Two years later Schmidt [18] used a nonconstructive approach to prove a bound that is asymptotically better in k. He showed that there is some absolute constant c for which

$$
r^{k-c \sqrt{k \ln (k)}} \leq w(r, k)
$$

In 1968, Berlekamp used an algebraic approach to construct what is still the best known lower bound for the case when $k=p+1$, where p is a prime, and $r=2$. He showed that

$$
p 2^{p}<w(2, p+1) .
$$

In this paper we use a construction to generalize this result to the following.
Theorem 1.1. If p is any prime with $2 \leq r \leq p \leq k$, then

$$
p^{r-1} 2^{p}<w(r, p+1) .
$$

This generalizes Berlekamp's theorem [1].
In 1973, Erdős and Lovász [5] used the Lovász Local Lemma on hypergraphs to show that

$$
\frac{r^{k-1}}{4 k}\left(1-\frac{1}{k}\right) \leq w(r, k) .
$$

In this paper we will use a recurrence to generalize Berlekamp's result to arbitrary number of colors. Our work will also improve bounds on small van der Waerden numbers. Finally, our bound is recursively-constructive, in that an explicit coloring when $r=2$ can be used to create explicit colorings for larger r.

The current best known general lower bound of this type is due to Kozik and Shabanov [12], who in 2016 proved

$$
c \cdot r^{k-1} \leq w(r, k)
$$

for some absolute constant $c>0$.
For large $r \gg k$, the best result, by O’Bryant, can be obtained by using the Hypergraph Symmetry Theorem and the Behrend-type results about sets of integers without long progressions (see [16]):

$$
w(r, k)>e^{f(k)(\ln r)^{\left[\log _{2} k\right]}}
$$

where $f(k)$ is a function of k. The above bound can be found in [4] and is best known for large $r \gg k$.
There are now constructive approaches to the Lovász Local Lemma (see [7]), which can be used to produce explicit constructions with high probability. Therefore, in a sense, the above two bounds can also be considered constructive.

In the following section we establish a recursive lower bound for $w(r, k)$, which is used to deduce our main result. In Section 4 we use this recurrence relation to improve known numerical lower bounds for some small values of r and k.

2. Proof of the main theorem

Definition 2.1. Let R_{r} represent the set of colors $\{1,2, \ldots, r\}$. For each $i \in R_{r}$, define $S_{i}(r, k)$ to be the p-tuple

$$
S_{i}(r, k)=(i, i+1, i+2, \ldots, r, 1,2,3, \ldots, r, 1,2, \ldots),
$$

where p is the largest prime such that $p \leq k$.

https://daneshyari.com/en/article/8903630

Download Persian Version:

https://daneshyari.com/article/8903630

Daneshyari.com

[^0]: E-mail addresses: thomasblankensh@csus.edu (T. Blankenship), jay.cummings@csus.edu (J. Cummings), vtaranchuk@csus.edu (V. Taranchuk).

