3-coloring triangle-free planar graphs with a precolored 9-cycle

Ilkyoo Choi ${ }^{\text {a }}$, Jan Ekstein ${ }^{\text {b }}$, Přemysl Holub ${ }^{\text {b }}$, Bernard Lidický ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do 17035, Republic of Korea
${ }^{\text {b }}$ University of West Bohemia, Czech Republic
${ }^{\text {c }}$ Iowa State University, USA

ARTICLE INFO

Article history:

Available online xxxx

Abstract

Given a triangle-free planar graph G and a 9-cycle C in G, we characterize situations where a 3-coloring of C does not extend to a proper 3-coloring of G. This extends previous results when C is a cycle of length at most 8 .

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Given a graph G, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. We will also use $|G|$ for the size of $E(G)$. A proper k-coloring of a graph G is a function $\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ such that $\varphi(u) \neq \varphi(v)$ for each edge $u v \in E(G)$. A graph G is k-colorable if there exists a proper k-coloring of G, and the minimum k where G is k-colorable is the chromatic number of G.

Garey and Johnson [18] proved that deciding if a graph is k-colorable is NP-complete even when $k=3$. Moreover, deciding if a graph is 3-colorable is still NP-complete when restricted to planar graphs [12]. Therefore, even though planar graphs are 4-colorable by the celebrated Four Color Theorem [5,6,22], finding sufficient conditions for a planar graph to be 3-colorable has been an active area of research. A landmark result in this area is Grötzsch's Theorem [20], which is the following:

Theorem 1 ([20]). Every triangle-free planar graph is 3-colorable.
We direct the readers to a nice survey by Borodin [8] for more results and conjectures regarding 3-colorings of planar graphs.

A graph G is k-critical if it is not $(k-1)$-colorable but every proper subgraph of G is $(k-1)$ colorable. Critical graphs are important since they are (in a certain sense) the minimal obstacles in

[^0]reducing the chromatic number of a graph. Numerous coloring algorithms are based on detecting critical subgraphs. Despite its importance, there is no known characterization of k-critical graphs when $k \geq 4$. On the other hand, there has been some success regarding 4 -critical planar graphs. Extending Theorem 1, the Grünbaum-Aksenov Theorem [1,7,21] states that a planar graph with at most three triangles is 3-colorable, and we know that there are infinitely many 4-critical planar graphs with four triangles. Borodin, Dvořák, Kostochka, Lidický, and Yancey [9] were able to characterize all 4-critical planar graphs with four triangles.

Given a graph G and a proper subgraph C of G, we say G is C-critical for k-coloring if for every proper subgraph H of G where $C \subseteq H$, there exists a proper k-coloring of C that extends to a proper k-coloring of H, but does not extend to a proper k-coloring of G. Roughly speaking, a C-critical graph for k-coloring is a minimal obstacle when trying to extend a proper k-coloring of C to a proper k-coloring of the entire graph. Note that $(k+1)$-critical graphs are exactly the C-critical graphs for k-coloring with C being the empty graph.

In the proof of Theorem 1, Grötzsch actually proved that any proper coloring of a 4-cycle or a 5-cycle extends to a proper 3-coloring of a triangle-free planar graph. This implies that there are no trianglefree planar graphs that are C-critical for 3 -coloring when C is a face of length 4 or 5 . This sparked the interest of characterizing triangle-free planar graphs that are C-critical for 3 -coloring when C is a face of longer length. Since we deal with 3-coloring triangle-free planar graphs in this paper, from now on, we will write "C-critical" instead of "C-critical for 3-coloring" for the sake of simplicity.

The investigation was first done on planar graphs with girth 5. Walls [25] and Thomassen [23] independently characterized C-critical planar graphs with girth 5 when C is a face of length at most 11 . The case when C is a 12 -face was initiated in [23], but a complete characterization was given by Dvorák and Kawarabayashi in [13]. Moreover, a recursive approach to identify all C-critical planar graphs with girth 5 when C is a face of any given length is given in [13]. Dvořák and Lidický [17] implemented the algorithm from [13] and used a computer to generate all C-critical graphs with girth 5 when C is a face of length at most 16 . The generated graphs were used to reveal some structure of 4 -critical graphs on surfaces without short contractible cycles. It would be computationally feasible to generate graphs with girth 5 even when C has length greater than 16 .

The situation for planar graphs with girth 4, which are triangle-free planar graphs, is more complicated since the list of C-critical graphs is not finite when C has size at least 6 . We already mentioned that there are no C-critical triangle-free planar graphs when C is a face of length 4 or 5 . An alternative proof of the case when C is a 5 -face was given by Aksenov [1]. Gimbel and Thomassen [19] not only showed that there exists a C-critical triangle-free planar graph when C is a 6 -face, but also characterized all of them. A k^{-}-cycle, k^{+}-cycle is a cycle of length at most k, at least k, respectively. A cycle C in a graph G is separating if $G-C$ has more connected components than G.

Theorem 2 (Gimbel and Thomassen [19]). Let G be a connected triangle-free plane graph with outer face bounded by a 6^{-}-cycle $C=c_{1} c_{2} \cdots$. The graph G is C-critical if and only if C is a 6 -cycle, all internal faces of G have length exactly four and G contains no separating 4-cycles. Furthermore, if φ is a 3-coloring of C that does not extend to a 3-coloring of G, then $\varphi\left(c_{1}\right)=\varphi\left(c_{4}\right), \varphi\left(c_{2}\right)=\varphi\left(c_{5}\right)$, and $\varphi\left(c_{3}\right)=\varphi\left(c_{6}\right)$.

Aksenov, Borodin, and Glebov [3] independently proved the case when C is a 6 -face using the discharging method, and also characterized all C-critical triangle-free planar graphs when C is a 7 -face in [4]. The case where C is a 7 -face was used in [9].

Theorem 3 (Aksenov, Borodin, and Glebov [4]). Let G be a connected triangle-free plane graph with outer face bounded by a 7 -cycle $C=c_{1} \cdots c_{7}$. The graph G is C-critical and ψ is a 3 -coloring of C that does not extend to a 3-coloring of G if and only if G contains no separating 5^{-}-cycles and one of the following propositions is satisfied up to relabeling of vertices (see Fig. 1 for an illustration).
(a) The graph G consists of C and the edge $c_{1} c_{5}$, and $\psi\left(c_{1}\right)=\psi\left(c_{5}\right)$.
(b) The graph G contains a vertex v adjacent to c_{1} and c_{4}, the cycle $c_{1} c_{2} c_{3} c_{4} v$ bounds a 5 -face and every face drawn inside the 6-cycle $v c_{4} c_{5} c_{6} c_{7} c_{1}$ has length four; furthermore, $\psi\left(c_{4}\right)=\psi\left(c_{7}\right)$ and $\psi\left(c_{5}\right)=\psi\left(c_{1}\right)$.

https://daneshyari.com/en/article/8903643

Download Persian Version:

https://daneshyari.com/article/8903643

Daneshyari.com

[^0]: E-mail addresses: ilkyoochoi@gmail.com (I. Choi), ekstein@kma.zcu.cz (J. Ekstein), holubpre@kma.zcu.cz (P. Holub), lidicky@iastate.edu (B. Lidický).

