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a b s t r a c t

We study the activation process in undirected graphs known as
bootstrap percolation: a vertex is active either if it belongs to a set
of initially activated vertices or if at some point it had at least r
active neighbors, for a threshold r that is identical for all vertices.
A contagious set is a vertex set whose activation results with the
entire graph being active. Let m(G, r) be the size of a smallest
contagious set in a graph G on n vertices.

We examine density conditions that ensure m(G, r) = r for
all r , and first show a necessary and sufficient condition on the
minimum degree. Moreover, we study the speed with which the
activation spreads and provide tight upper bounds on the number
of rounds it takes until all nodes are activated in such graphs.

We also investigate what average degree asserts the existence
of small contagious sets. For n ≥ k ≥ r , we denote by M(n, k, r)
the maximum number of edges in an n-vertex graph G satisfying
m(G, r) > k. We determine the precise value of M(n, k, 2) and
M(n, k, k), assuming that n is sufficiently large compared to k.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this article we study the r-neighbor bootstrap percolation process. Here we are given an
undirected graph G = (V , E) and an integer r ≥ 1. Every vertex is either active or inactive. We say a
set A of vertices is active if all vertices in A are active. The vertices that are active initially are called
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seeds, and the set of seeds is denoted by A0. If vertices become active thereafter we also refer to them
as infected. A contagious process evolves in discrete rounds. The set of active vertices in round i > 0 is

Ai = Ai−1 ∪ {v : |N(v) ∩ Ai−1| ≥ r},

where N(v) is the set of neighbors of v. That is, a vertex becomes active irrevocably in a given round
if it has at least r active neighbors. We refer to r as the threshold of the graph. Let ⟨A0⟩ be the set of
nodes that will eventually become infected if we activate A0.

Definition 1. Given G = (V , E), a set A0 ⊆ V is called contagious (also known as ‘‘percolating’’)
if ⟨A0⟩ = V . In words, activating A0 results in the infection of the entire vertex set. The size of the
smallest contagious set is denoted by m(G, r). For a contagious set A0, the number of rounds until
total infection is the smallest integer t with At = V . We call t the infection time for A0.

The term bootstrap percolation is used sometimes to model the case where the seeds are chosen
independently at random. In this work we use this term also with respect to the deterministic
selection of a contagious set. Bootstrap percolation was first studied by the statistical physicists
Chalupa, Leath, and Reich [11]. Since then, this model has found applications in many fields. For
example, this model is related to ‘‘word of mouth’’ effects occurring in viral marketing, where the
information is only revealed to a small group of persons initially, who subsequently share it with
their friends resulting in a cascade that may spread to the entire network. Similarly, we can think of
cascading effects in finance, where an institute might default if a certain number of business partners
fail (cp. [15,2,16,12] and the references therein). Furthermore, various questions related to bootstrap
percolation have been examined for a large variety of graphs includingwork on hypercubes by Balogh
and Bollobás [4] and on grids by Balogh, Bollobás, Duminil-Copin, and Morris [5], and by Balogh and
Pete [6]. Several models of random graphs were studied by Janson, Łuczak, Turova, and Vallier [14],
by Amini and Fountoulakis [3], and by Balogh and Pittel [7]. Coja-Oghlan, Feige, Krivelevich, and
Reichman examined contagious sets in expanders [13].

A natural question is to determine for a given integer k, what combinatorial properties of graphs
ensure that there is a contagious set of size k. Such a characterization seems difficult even for k = 2
(and r = 2). Indeed, the family of all graphs with a contagious set of size two include, for example,
cliques, bipartite cliques (with both sides larger than one), and binomial random graphs with edge
probability p ≥ n−1/2+ϵ [14].

Ackerman, Ben-Zwi, andWolfovitz [1] andReichman [19] examined the connectionbetweenm(G, r)
and the degree sequence of G. Here we continue this line of investigation and study two basic (and
interrelated) graph parameters: the minimum degree and edge cardinality. More concretely, our
goal is to determine what conditions on these parameters imply that m(G, r) ≤ k where k is small
compared to the number of vertices in G, and r ≤ k. We study the cases r = k and r = 2.

How large does the minimum degree have to be in order to guarantee a contagious set of size k =

r ≥ 2? Clearly, such a contagious set has minimum cardinality if it exists. We prove that
⌈ k−1

k · n
⌉

suffices, where n is the number of vertices. In particular, if k = 2 then the required minimum degree
is

⌈ n
2

⌉
. A graph with this property is called Dirac graph. We also show that this condition on the

minimum degree is the best possible. For k = 2 this is easy to see: if we lower the minimum degree
to

⌈ n
2 − 1

⌉
, then Gmay be disconnected implying thatm(G, 2) > 2 (provided that G has at least three

vertices). In Section 5 we demonstrate that a contagious set of size 2 also exists in a generalization
of Dirac graphs known as Ore graphs (Dirac graphs and Ore graphs are known to have a Hamiltonian
cycle).

While the minimum size of contagious sets has been studied thoroughly, much less is known on
the number of rounds that the activation process takes to infect the whole graph (e.g., see the work
of Bollobás, Holmgren, Smith, and Uzzell [9], and the articles of Bollobás, Smith, and Uzzell [10] and
of Przykucki [18]). We define the maximum infection time (also referred to as maximum percolation
time) of a graph G as the largest infection time for any of its contagious sets (cp. Definition 1), i.e. the
largest number of rounds that the activation process requires until the whole graph is infected. The
maximum infection time of a class of graphs is defined analogously.
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