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a b s t r a c t

The complexity of the maximum common connected subgraph
problem in partial k-trees is still not fully understood. Polynomial-
time solutions are known for degree-bounded outerplanar graphs,
a subclass of the partial 2-trees. On the other hand, the problem is
known to beNP-hard in vertex-labeled partial 11-trees of bounded
degree. We consider series–parallel graphs, i.e., partial 2-trees. We
show that the problem remains NP-hard in biconnected series–
parallel graphs with all but one vertex of degree 3 or less. A pos-
itive complexity result is presented for a related problem of high
practical relevance which asks for a maximum common connected
subgraph that preserves blocks and bridges of the input graphs.We
present a polynomial time algorithm for this problem in series–
parallel graphs, which utilizes a combination of BC- and SP-tree
data structures to decompose both graphs.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Finding a maximum common connected subgraph (MCS) of two input graphs is an important
task in many application domains like pattern recognition and cheminformatics [21]. The problem is
well known to be NP-hard. However, practically relevant graphs, e.g., derived from small molecules,
often have small treewidth [11]. Hence, it is highly relevant to develop polynomial time algorithms
for tractable graph classes and to clearly identify graph classes where MCS remains NP-hard. For
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the related subgraph isomorphism problem such a clear demarcation for partial k-trees is known.
Subgraph isomorphism is solvable in polynomial time in partial k-trees if the smaller graph either
is k-connected or has bounded degree [8,15]. However, it is NP-complete when the smaller graph
is not k-connected or has more than k vertices of unbounded degree [9]. MCS is at least as hard as
subgraph isomorphism; two recent results show that it actually is considerably harder: Akutsu [2]
has shown that MCS is NP-hard in vertex-labeled partial 11-trees of bounded degree. Furthermore, it
was believed that the problem of finding a maximum common k-connected subgraph of k-connected
partial k-trees (k-MCS) can be solvedwith the same technique thatwas successfully used for subgraph
isomorphism. Recently, it was shown that these techniques are insufficient even for series–parallel
graphs [13]. However, for this class of graphs a new approach was devised, which employs SP-trees
to represent the series–parallel composition of the input graphs. Further polynomial time algorithms
were proposed for MCS in almost trees and outerplanar graphs of bounded degree [1,3].

Motivated by the fact that even subgraph isomorphism is NP-hard when the smaller graph is a
tree and the other is outerplanar [22], a problem variation referred to as block-and-bridge preserving
MCS (BBP-MCS)was considered [19–21]. Here, the common connected subgraph is required to inherit
the structure of blocks, i.e., maximal biconnected subgraphs, and bridges of the input graphs, which
renders efficient algorithms for outerplanar graphs possible [19]. Notably, BBP-MCS yieldsmeaningful
results for molecular graphs in practice and even compares favorably to the solutions obtained by
ordinary MCS in empirical studies [18,21].

Our contribution.

On the theoretical side, we prove that finding an MCS of two biconnected series–parallel graphs,
i.e., partial 2-trees [4], with all but one vertex of degree bounded by 3 isNP-hard.We obtain this result
by a polynomial-time reduction of the Numerical Matching with Target Sums problem. Furthermore,
we consider BBP-MCS in series–parallel graphs and propose a polynomial time solution, thus, gen-
eralizing the known result for outerplanar graphs. Employing BC- and SP-tree decompositions of the
input graphs allows us to identify subproblems closely related to k-MCS, k ∈ {1, 2}. We make use
of a classical approach for the maximum common subtree problem [16], i.e., 1-MCS, and a recently
proposed algorithm for 2-MCS [13] to obtain our result. Our approach yields a running time of O(n6)
in series–parallel andO(n5) in outerplanar graphs, where n is themaximumnumber of vertices in one
of the input graphs.

2. Preliminaries

We consider simple graphs, i.e., a graph G without loops and multiple edges. We denote the finite
set of vertices by V (G) and the finite set of edges by E(G). A graph G′ is a subgraph of G, denoted by
G′ ⊆ G, if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). A subgraph G′ ⊆ G is said to be proper if G′ ̸= G and we
write G′ ⊂ G. A subgraph G ⊆ H is called maximal regarding a property if G itself has the property
and there is no graph G′ which has the property and satisfies G ⊂ G′ ⊆ H . For two graphs G = (V , E)
and G′ = (V ′, E ′), we denote by G ∪ G′ the graph (V ∪ V ′, E ∪ E ′). For short, we write G ∪ {v} and
G∪{e} to denote the unionwith a graph consisting of a single vertex v and a single edge ewith its two
endpoints, respectively. A graph is connected if there is a path between any two vertices. Eachmaximal
connected subgraph G′ ⊆ G is called a connected component. Let V ⊆ V (G), then G[V ] denotes the
induced subgraph G′ ⊆ G with V (G′) = V and E(G′) = {(u, v) ∈ V × V : (u, v) ∈ E(G)}. A set S ⊆ V (G)
is called |S|-separator or separator of a connected graph G if G \ S := G[V (G) \ S] consists of at least
two connected components. If S = {v} is a separator then v is called cutvertex. A separator S is said to
separate two vertices a, b ∈ V (G) if a and b are in different connected components of G\S. A separator
S ofG is calledminimal if there are vertices a, b ∈ V (G) that are separated by S and there is no separator
S ′ ⊂ S that separates a and b. A graph Gwith |V (G)| > k is called k-connected if there is no j-separator
of G such that j < k and biconnected if k = 2. We define [n] := {1, . . . , n} for all n ∈ N. A sequence
of distinct vertices (v0, v1, . . . , vn) such that (vi−1, vi) ∈ E(G) for all i ∈ [n] is called path. The vertices
and the edges connecting consecutive vertices are said to be contained in the path. If all but the first
and the last vertex are distinct, i.e., vn = v0, the sequence is called cycle. The length of a path or cycle is
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