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a b s t r a c t

This paper deals with two types of repetitions in strings: squares,
which consist of two adjacent occurrences of substrings, and runs,
which are periodic substrings that cannot be extended further to
the left or right while maintaining the period. We show how to
compute all the primitively-rooted squares in a given partial word,
which is a sequence that may have undefined positions, called
holes or wildcards, that match any letter of the alphabet over
which the sequence is defined. We also describe an algorithm for
computing all primitively-rooted runs in a given partial word and
extend previous analyses on the number of runs to partial words.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Repetitions in strings, or words, have been extensively studied, both from the algorithmic point of
view and the combinatorial point of view (see, for example, [10,14]). Applications can be found in
many important areas such as computational biology, text compression, natural language processing,
to name a few [12,30]. Repetitions are characterized by their periods, lengths, and starting positions.
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There are many equivalent characterizations of repetitions, and in this paper a repetition in a word w
is a triple (f , l, p), where w[f ..l] is p-periodic and the exponent of the repetition, l−f+1

p , is at least 2.
Squares are the special case of repetitions when l−f+1

p is 2. In other words, a square in a word is a
factor uu for some word u, called the root of the square. It is primitively-rooted or PR if u is primitive,
i.e., u is not a power of another word. There can be as many as Θ(n log n) occurrences of primitively-
rooted squares in a word of length n, and several O(n log n) time algorithms have been developed for
finding all the repetitions [2,11,31]. A major breakthrough was to compute them in O(n) time; this
was achieved in two steps: (1) all repetitions are encoded inmaximal repetitions or runs and (2) there
is a linear bound on the number of runs [27,28].

A repetition (f , l, p) is maximal, or is a run, if it is non-extendible, i.e., neither (f − 1, l, p) nor
(f , l + 1, p) are repetitions in the word w. Note that since every run has exponent at least 2, the
square at the beginning of the run uniquely defines the run. This is because that square contains the
starting position and period of the run, and the property of the run being maximal gives a unique
ending position. A PR-run in w is a maximal repetition (f , l, p) with a primitive root of length p. If
w = 00011010110101101010, then w[2..18] = (01101)

17
5 is a PR-run with period 5, root 01101,

and exponent 17
5 (indexing in the word starts at 0). The maximum number of runs in a string of

length n is bounded from above by cn, for some constant c. A first proof was given by Kolpakov
and Kucherov [27,28] who provided an O(n) time algorithm for detecting all runs. However, no
constant c can be deduced from their proof. Kolpakov and Kucherov’s ‘‘runs conjecture’’ that the
maximum number of runs in a string of length n is less than n has generated bounds that have
been improved over the years (upper bounds [13,15,22,23,34,35] and lower bounds [19–21,33,36]).
Recently, Bannai et al. [4,5] studied runs through combinatorics of Lyndon words and finally settled
the ‘‘runs’’ conjecture (another simple proof appears in [16]). The number of runs being less than n
has applications to the analysis of any optimal algorithm for computing all repetitions.

Partial words, also referred to as strings with don’t-cares which allow for incomplete or corrupted
data [1,18], are sequences that may contain undefined positions, called holes and represented by ⋄’s,
that are compatible with, or match, any letter in the alphabet. Total words are partial words without
holes. Here, a factor is a consecutive sequence of symbols in a partial word w, while a subword is a
total word compatible with a factor in w. A factor uv is a square if some completion, i.e., a filling in of
the holes with letters from the alphabet, turns uv into a total word that is a square; equivalently, u
and v are compatible.

Repetitions in partial words have also recently been studied, both from the algorithmic point of
view and the combinatorial point of view (see, for example, [7–9,17,24,32]). However, no work has
been dedicated to computing all occurrences of PR-squares and PR-runs in partial words. The known
algorithms for detecting them in total words do not extend easily to partial words, one of the most
important culprits being that the compatibility relation is not transitive, as opposed to the equality
relation being transitive, e.g., 0 is compatiblewith⋄ and⋄ is compatiblewith 1, but 0 is not compatible
with 1.

So we adopt an approach, for our algorithms, based on the large divisors of the length n of the input
partial word, i.e., divisors of n, distinct from n, whose multiples are either n itself or not divisors of
n. Every distinct prime divisor i of n gives rise to exactly one large divisor of n, namely n

i , and hence
the number of large divisors of n, ω(n), is the number of distinct prime divisors of n, e.g., 30 has large
divisors 6, 10, and 15, givingω(30) = 3. Recently, a formula for the number of primitive partial words
was given in terms of the large divisors [7]. In fact, themaximumnumber of holes in a primitive partial
word of length n over a k-letter alphabet is n− ω(n)− 1, for all n, k ≥ 2, and this bound is tight.

The contents of our paper are as follows: In Section 2, we review a few basic concepts on partial
words such as periodicity and primitivity. In Section 3, we present efficient algorithms for computing
all occurrences of PR-square factors and PR-runs in any partial word over a k-letter alphabet. In
Section 4, we describe an efficient algorithm for counting the number of occurrences of PR-square
subwords. In Section 5, we extend previous analyses on PR-run occurrences in total words to the case
of PR-run occurrences in partial words. In particular, we show a linear upper bound on the number of
runs for partial words with a constant number of holes. We also show how to recursively count the
exact number of microruns, those of small period, for partial words. Finally in Section 6, we conclude
with some open problems.



Download	English	Version:

https://daneshyari.com/en/article/8903652

Download	Persian	Version:

https://daneshyari.com/article/8903652

Daneshyari.com

https://daneshyari.com/en/article/8903652
https://daneshyari.com/article/8903652
https://daneshyari.com/

