European Journal of Combinatorics 61 (2017) 133-137

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

A characterization of tightly triangulated 3-manifolds

European Journal of Combinatorics

Bhaskar Bagchi^a, Basudeb Datta^b, Jonathan Spreer^c

^a Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore 560 059, India

^b Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India

^c School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia

ARTICLE INFO

Article history: Received 1 January 2016 Accepted 21 October 2016 Available online 18 November 2016

ABSTRACT

For a field \mathbb{F} , the notion of \mathbb{F} -tightness of simplicial complexes was introduced by Kühnel. Kühnel and Lutz conjectured that \mathbb{F} -tight triangulations of a closed manifold are the most economic of all possible triangulations of the manifold.

The boundary of a triangle is the only \mathbb{F} -tight triangulation of a closed 1-manifold. A triangulation of a closed 2-manifold is \mathbb{F} -tight if and only if it is \mathbb{F} -orientable and neighbourly. In this paper we prove that a triangulation of a closed 3-manifold is \mathbb{F} -tight if and only if it is \mathbb{F} -orientable, neighbourly and stacked. In consequence, the Kühnel–Lutz conjecture is valid in dimension ≤ 3 .

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

All simplicial complexes considered in this paper are finite and abstract. The vertex set of a simplicial complex *X* will be denoted by *V*(*X*). For $A \subseteq V(X)$, the induced subcomplex *X*[*A*] of *X* on vertex set *A* is defined by *X*[*A*] := { $\alpha \in X : \alpha \subseteq A$ }. For $x \in V(X)$, the subcomplexes ast_{*X*}(x) = { $\alpha \in X : x \notin \alpha$ } = *X*[*V*(*X*) \ {*x*}] and lk_{*X*}(x) = { $\alpha \in X : x \notin \alpha, \alpha \sqcup \{x\} \in X$ } are called the *antistar* and the *link* of *x* in *X*, respectively. A simplicial complex *X* is said to be a *triangulated* (*closed*) *manifold* if it triangulates a (closed) manifold, i.e., if the geometric carrier |*X*| of *X* is a (closed) topological manifold. A triangulated closed and connected *d*-manifold *X* is said to be \mathbb{F} -orientable if $H_d(X; \mathbb{F}) \neq 0$. If two triangulated *d*-manifolds *X* and *Y* intersect in a single common *d*-face α then

http://dx.doi.org/10.1016/j.ejc.2016.10.005

0195-6698/© 2016 Elsevier Ltd. All rights reserved.

E-mail addresses: bbagchi@isibang.ac.in (B. Bagchi), dattab@math.iisc.ernet.in (B. Datta), j.spreer@uq.edu.au (J. Spreer).

 $X#Y := (X \cup Y) \setminus \{\alpha\}$ is called the *connected sum of X and Y along* α . It triangulates the topological connected sum |X|#|Y| or $|X|#|\overline{Y}|$. Notice that in dimension ≤ 3 these two spaces are homeomorphic.

For our purpose, a graph may be defined as a simplicial complex of dimension ≤ 1 . For $n \geq 3$, the *n*-cycle C_n is the unique *n*-vertex connected graph in which each vertex lies in exactly two edges. For $n \geq 1$, the complete graph K_n is the *n*-vertex graph in which each pair of vertices forms an edge. For $m, n \geq 1$, the complete bipartite graph $K_{m,n}$ is the graph with m + n vertices and mn edges in which each of the first *m* vertices forms an edge with each of the last *n* vertices. Two graphs are said to be homeomorphic if their geometric carriers are homeomorphic. A graph is said to be planar if it is a subcomplex of a triangulation of the 2-sphere S^2 . In this paper, we shall have an occasion to use the easy half of Kuratowski's famous characterization of planar graphs [5]: A graph is planar if and only if it has no subgraph homeomorphic to K_5 or $K_{3,3}$.

If \mathbb{F} is a field and X is a simplicial complex then, following Kühnel [9], we say that X is \mathbb{F} -tight if (a) X is connected, and (b) the \mathbb{F} -linear map $H_*(Y; \mathbb{F}) \to H_*(X; \mathbb{F})$, induced by the inclusion map $Y \hookrightarrow X$, is injective for every induced subcomplex Y of X.

If X is a simplicial complex of dimension d, then its *face vector* (f_0, \ldots, f_d) is defined by $f_i = f_i(X) := #\{\alpha \in X : \dim(\alpha) = i\}, 0 \le i \le d$. A simplicial complex X is said to be *neighbourly* if each pair of its vertices forms an edge, i.e., if $f_1(X) = \binom{f_0(X)}{2}$.

A simplicial complex X is said to be *strongly minimal* if, for every triangulation Y of the geometric carrier |X| of X, we have $f_i(X) \le f_i(Y)$ for all $i, 0 \le i \le \dim(X)$. Our interest in the notion of \mathbb{F} -tightness mainly stems from the following famous conjecture.

Conjecture 1.1 (Kühnel–Lutz [10]). For any field F, every F-tight triangulated closed manifold is strongly minimal.

Following Walkup [16] and McMullen–Walkup [12], a triangulated ball *B* is said to be *stacked* if all the faces of *B* of codimension 2 are contained in the boundary ∂B of *B*. A triangulated sphere *S* is said to be *stacked* if there is a stacked ball *B* such that $S = \partial B$. This notion was extended to triangulated manifolds by Murai and Nevo [14]. Thus, a triangulated manifold *X* with boundary ∂X is said to be *stacked* if all its faces of codimension 2 are contained in ∂X . A triangulated closed manifold *M* is said to be *stacked* if there is a stacked triangulated manifold *X* such that $M = \partial X$. A triangulated manifold is said to be *stacked* if all its vertex links are stacked spheres or stacked balls.

The main result of this paper is the following characterization of \mathbb{F} -tight triangulated closed 3-manifolds, for all fields \mathbb{F} .

Theorem 1.2. A triangulated closed 3-manifold M is \mathbb{F} -tight if and only if M is \mathbb{F} -orientable, neighbourly and stacked.

The special case of Theorem 1.2, where char(\mathbb{F}) $\neq 2$, was proved in our previous paper [4]. In [4, Conjecture 1.12] we conjectured the validity of Theorem 1.2 in general. In fact, it is already known from [3] that an \mathbb{F} -tight closed triangulated 3-manifold *M* is \mathbb{F} -orientable and neighbourly. Here, we show that it is also stacked.

As a consequence of Theorem 1.2, we show that the Kühnel–Lutz conjecture (Conjecture 1.1) is valid up to dimension 3. Thus,

Corollary 1.3. If M is an \mathbb{F} -tight triangulated closed manifold of dimension ≤ 3 , then M is strongly minimal.

As a second consequence of Theorem 1.2, we show:

Corollary 1.4. The only closed topological 3-manifolds which may possibly have \mathbb{F} -tight triangulations are S^3 , $(S^2 \times S^1)^{\#k}$ and $(S^2 \times S^1)^{\#k}$, where k is a positive integer such that 80k + 1 is a perfect square.

The boundary of the 4-simplex is a tight triangulation of S^3 . Moreover, in [7], \mathbb{Z}_2 -tight triangulations of $(S^2 \times S^1)^{\#k}$ are constructed for k = 1, 30, 99, 208, 357 and 546. The smallest values of k for which no tight triangulation of $(S^2 \times S^1)^{\#k}$ is known are k = 12, 19, 21. In contrast, no \mathbb{F} -tight triangulations of $(S^2 \times S^1)^{\#k}$ can be found in the literature.

Download English Version:

https://daneshyari.com/en/article/8903658

Download Persian Version:

https://daneshyari.com/article/8903658

Daneshyari.com