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We completely classify non-spanning 3-polytopes, by which we 
mean lattice 3-polytopes whose lattice points do not affinely 
span the lattice. We show that, except for six small polytopes 
(all having between five and eight lattice points), every non-
spanning 3-polytope P has the following simple description: 
P ∩Z3 consists of either (1) two lattice segments lying in par-
allel and consecutive lattice planes or (2) a lattice segment 
together with three or four extra lattice points placed in a 
very specific manner.
From this description we conclude that all the empty tetrahe-
dra in a non-spanning 3-polytope P have the same volume and 
they form a triangulation of P , and we compute the h∗-vectors 
of all non-spanning 3-polytopes.
We also show that all spanning 3-polytopes contain a unimod-
ular tetrahedron, except for two particular 3-polytopes with 
five lattice points.
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1. Introduction and statement of results

A lattice d-polytope is a polytope P ⊂ R
d with vertices in Zd and with aff(P ) = R

d. 
We call size of P its number of lattice points and width the minimum length of the image 
f(P ) when f ranges over all affine non-constant functionals f : Rd → R with f(Zd) ⊆ Z. 
That is, the minimum lattice distance between parallel hyperplanes that enclose P .

In our papers [2–4] we have enumerated all lattice 3-polytopes of size 11 or less and of 
width greater than one. This classification makes sense thanks to the following result [2, 
Theorem 3]: for each n ∈ N there are only finitely many lattice 3-polytopes of width 
greater than one and with exactly n lattice points. Here and in the rest of the paper we 
consider lattice polytopes modulo unimodular equivalence or lattice isomorphism. That 
is, we consider P and Q isomorphic (and write P ∼= Q) if there is an affine automorphism 
f : Rd → R

d with f(Zd) = Z
d and f(P ) = Q.

As a by-product of the classification we noticed that most lattice 3-polytopes are 
“lattice-spanning”, according to the following definition:

Definition. Let P ⊂ R
d be a lattice d-polytope. We call sublattice index of P the index, as 

a sublattice of Zd, of the affine lattice generated by P∩Zd. P is called lattice-spanning if it 
has index 1. We abbreviate sublattice index and lattice-spanning as index and spanning.

In this paper we completely classify non-spanning lattice 3-polytopes. Part of our mo-
tivation comes from the recent results of Hofscheier et al. [6,7] on h∗-vectors of spanning 
polytopes (see Theorem 7.1). In particular, in Section 7 we compute the h∗-vectors of 
all non-spanning 3-polytopes and show that they still satisfy the inequalities proved by 
Hofscheier et al. for spanning polytopes, with the exception of empty tetrahedra that 
satisfy them only partially.

In dimensions 1 and 2, every lattice polytope contains a unimodular simplex, i.e., 
a lattice basis, and is hence lattice-spanning. In dimension 3 it is easy to construct 
infinitely many lattice polytopes of width 1 and of any index q ∈ N, generalizing White’s 
empty tetrahedra ([9]). Indeed, for any positive integers p, q, a, b with gcd(p, q) = 1 the 
lattice tetrahedron

Tp,q(a, b) := conv{(0, 0, 0), (a, 0, 0), (0, 0, 1), (bp, bq, 1)}

has index q, width 1, size a + b + 2 and volume abq (see a depiction of it in Fig. 1). 
Here and in the rest of the paper we consider the volume of lattice polytopes normalized 
to the lattice, so that it is always an integer and the normalized volume of a simplex 

conv(v0, . . . , vd) equals its determinant 
∣∣∣∣det

(
v0 · · · vd
1 · · · 1

)∣∣∣∣.
Lemma 1.1 (Corollary 3.3). Every non-spanning 3-polytope of width one is isomorphic 
to some Tp,q(a, b).
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