

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Proof of a conjecture of Kenyon and Wilson on semicontiguous minors

Tri Lai¹

Department of Mathematics, University of Nebraska-Lincol, Lincoln, NE 68588, United States of America

ARTICLE INFO

Article history: Received 15 September 2016 Available online xxxx

Keywords: Perfect matchings Domino tilings Dual graph Graphical condensation Electrical networks Response matrix Aztec diamonds

ABSTRACT

Kenyon and Wilson showed how to test if a circular planar electrical network with n nodes is well-connected by checking the positivity of $\binom{n}{2}$ central minors of the response matrix. Their test is based on the fact that any contiguous minor of a matrix can be expressed as a Laurent polynomial in the central minors. Moreover, the Laurent polynomial is the generating function of domino tilings of a weighted Aztec diamond. They conjectured that a larger family of minors, semicontiguous minors, can also be written in terms of domino tilings of a region on the square lattice. In this paper, we present a proof of the conjecture.

@ 2018 Elsevier Inc. All rights reserved.

1. Introduction

The study of the electrical networks comes from classical physics with the work of Ohm and Kirchhoff more than 100 years ago. The *circular planar electrical networks* were first studied systematically by Colin de Verdière [6] and Curtis, Ingerman, Moores,

https://doi.org/10.1016/j.jcta.2018.07.008 0097-3165/© 2018 Elsevier Inc. All rights reserved.

E-mail address: tlai3@unl.edu.

 $^{^{1}}$ This research was supported in part by the Institute for Mathematics and its Applications with funds provided by the NSF (grant no. DMS-0931945).

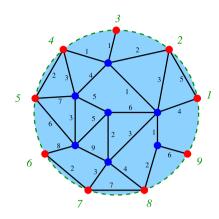


Fig. 1.1. A circular planar electrical network with 9 nodes.

and Morrow [7,8]. Recently, a number of new properties of the circular planar electrical networks have been discovered (see e.g. [1,13,14,23,24,28]).

A circular planar electrical network (or simply network in this paper) is a finite graph G = (V, E) embedded on a disk with a set of distinguished vertices $N \subseteq V$ on the circle, called nodes, and a conductance function $wt : E \to \mathbb{R}^+$ (see Fig. 1.1 for an example).

Arrange the indices 1, 2, ..., n of an $n \times n$ matrix $M = (m_{i,j})_{1 \leq i,j \leq n}$ in counterclockwise order around the circle. Assume that $A = \{a_1, a_2, ..., a_k\}$ and $B = \{b_1, b_2, ..., b_\ell\}$ are two sets of indices so that $a_1, a_2, ..., a_k$ and $b_\ell, b_{\ell-1}, ..., b_1$ are in counter-clockwise order around the circle. We denote by M_A^B the submatrix $(m_{a_i,b_j})_{\substack{1 \leq i \leq k \\ 1 \leq j \leq \ell}}$ of M. In the case $k = \ell$, we call the pair (A, B) a circular pair of M and the determinant det M_A^B a circular minor² of M. If A and B are non-interlaced around the circle, we call the latter minor a non-interlaced circular minor.

Associated with a network with n nodes is a response matrix $\Lambda = (\lambda_{i,j})_{1 \leq i,j \leq n}$ that measures the response of the network to potential applied at the nodes. In particular, $-\lambda_{i,j}$ is the current that would flow into node j if node i is set to one volt and the remaining nodes are set to zero volts. It has been shown that a matrix M is the response matrix of a network if and only if it is symmetric with row and column sums equal to zero, and each non-interlaced circular minor det M_A^B is non-negative (see Theorem 4 in [7]).

A network is called *well-connected* if for any two non-interlaced sets of k nodes A and B, there are k pairwise vertex-disjoint paths in G connecting the nodes in A to the nodes in B. A number of equivalent definitions of the well-connected networks were given in [6]. It has been shown by Colin de Verdière that a network is well-connected if and only if all non-interlaced circular minors of the response matrix are positive.

 $^{^{2}}$ In this paper, we refer *minors* as determinants of submatrices.

Download English Version:

https://daneshyari.com/en/article/8903679

Download Persian Version:

https://daneshyari.com/article/8903679

Daneshyari.com