

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Restricted Stirling and Lah number matrices and their inverses

John Engbers^{a,1}, David Galvin^{b,2}, Cliff Smyth^{c,3}

 ^a Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee WI, United States of America
^b Department of Mathematics, University of Notre Dame, Notre Dame IN, United States of America

^c Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro NC, United States of America

A R T I C L E I N F O

Article history: Received 28 December 2017 Available online xxxx

Keywords: Stirling numbers Lah numbers Riordan matrix Riordan group Reversion Lagrange inversion Whitney numbers Restricted partition poset

ABSTRACT

Given $R \subseteq \mathbb{N}$ let $\binom{n}{k}_{R}$, $\binom{n}{k}_{R}$, and $L(n,k)_{R}$ count the number of ways of partitioning the set $[n] := \{1, 2, \dots, n\}$ into k nonempty subsets, cycles and lists, respectively, with each block having cardinality in R. We refer to these as the R-restricted Stirling numbers of the second kind, R-restricted unsigned Stirling numbers of the first kind and the R-restricted Lah numbers, respectively. Note that the classical Stirling numbers of the second kind, unsigned Stirling numbers of the first kind, and Lah numbers are ${n \atop k} = {n \atop k}_{\mathbb{N}}$, ${n \brack k} = {n \atop k}_{\mathbb{N}}$, ${n \atop k} = {n \atop k}_{\mathbb{N}}$, and $L(n,k) = L(n,k)_{\mathbb{N}}$, respectively.
$$\begin{split} & L(n,k) = L(n,k)_{\mathbb{N}}, \text{ trapectron}, \\ & \text{It is well-known that the infinite matrices } [\binom{n}{k}]_{n,k\geq 1}, [\binom{n}{k}]_{n,k\geq 1}, \\ & \text{and } [L(n,k)]_{n,k\geq 1} \text{ have inverses } [(-1)^{n-k}\binom{n}{k}]_{n,k\geq 1}, \\ & [(-1)^{n-k}\binom{n}{k}]_{n,k\geq 1} \text{ and } [(-1)^{n-k}L(n,k)]_{n,k\geq 1} \text{ respectively.} \end{split}$$
The inverse matrices $[{n \atop k}_R]_{n,k\geq 1}^{-1}$, $[{n \atop k}_R]_{n,k\geq 1}^{-1}$ and $[L(n,k)_R]_{n,k>1}^{-1}$ exist and have integer entries if and only if $1 \in R$. We express each entry of each of these matrices as the difference between the cardinalities of two explicitly defined families of labeled forests. In particular the entries of

E-mail address: cdsmyth@uncg.edu (C. Smyth).

 $^{^1\,}$ Research supported by the Simons Foundation grant 524418.

 $^{^2\,}$ Research supported by the Simons Foundation grant 360240 and by the National Security Agency grant NSA H98230-13-1-0248.

³ Research supported by the Simons Foundation grant 360468.

 $\begin{bmatrix} \binom{n}{k} \\ [r] \end{bmatrix}_{n,k\geq 1}^{-1} \text{ have combinatorial interpretations, affirmatively answering a question of Choi, Long, Ng and Smith from 2006. If we have <math>1, 2 \in R$ and if for all $n \in R$ with n odd and $n \geq 3$, we have $n \pm 1 \in R$, we additionally show that each entry of $\begin{bmatrix} \binom{n}{k} \\ R \end{bmatrix}_{n,k\geq 1}^{-1}$, $\begin{bmatrix} \binom{n}{k} \\ R \end{bmatrix}_{n,k\geq 1}^{n-1}$, and $\begin{bmatrix} L(n,k)_R \end{bmatrix}_{n,k\geq 1}^{-1}$ is up to an explicit sign the cardinality of a single explicitly defined family of labeled forests. With R as before we also do the same for restriction sets of the form $R(d) = \{d(r-1)+1: r \in R\}$ for all $d \geq 1$. Our results also provide combinatorial interpretations of the kth Whitney numbers of the first and second kinds of $\Pi_{n,d}^{1,d}$, the poset of partitions of [n] that have each part size congruent to 1 mod d.

@ 2018 Published by Elsevier Inc.

1. Introduction

For all integers $n, k \geq 1$, let $\binom{n}{k}$, $\binom{n}{k}$, and L(n,k) be the classical Stirling numbers of the second kind, unsigned Stirling number of the first kind, and Lah numbers, respectively. These numbers are defined as follows: $\binom{n}{k}$ is the number of partitions of $[n] := \{1, 2, \ldots, n\}$ into k non-empty subsets, $\binom{n}{k}$ is the number of partitions of [n]into k non-empty cyclically ordered sets, i.e. cycles, and L(n,k) is the number of partitions of [n] into k non-empty linearly ordered sets, i.e. lists. All of our partitions will be unordered unless we specify otherwise. Let $S_2 := [\binom{n}{k}]_{n,k\geq 1}$, $S_1 := [\binom{n}{k}]_{n,k\geq 1}$, and $L := [L(n,k)]_{n,k\geq 1}$ be infinite matrices with rows and columns indexed by the natural numbers $\mathbb{N} := \{1, 2, \ldots\}$. In this notation n is the row index and k is the column index. It is well-known that $S_2^{-1} = [(-1)^{n-k} \binom{n}{k}]_{n,k\geq 1}$, $S_1^{-1} = [(-1)^{n-k} \binom{n}{k}]_{n,k\geq 1}$ and $L^{-1} = [(-1)^{n-k}L(n,k)]_{n,k\geq 1}$. In particular, each entry of each inverse matrix has, up to sign, a combinatorial interpretation.

We consider the following generalizations of Stirling and Lah numbers.

Definition 1.1. For $R \subseteq \mathbb{N}$ the *R*-restricted Stirling number of the second kind, ${n \atop k}_R$, is the number of partitions of [n] into k non-empty subsets such that the cardinality of each subset is restricted to lie in R. Analogously, the *R*-restricted unsigned Stirling numbers of the first kind ${n \atop k}_R$ and *R*-restricted Lah numbers $L(n,k)_R$ are the numbers of partitions of [n] into k cycles and lists, respectively, with cardinalities restricted to lie in R.

Note that we recover the classical Stirling numbers of both kinds and the Lah numbers by taking R to be \mathbb{N} (e.g. $\binom{n}{k}_{\mathbb{N}} = \binom{n}{k}$ etc.).

Various instances of restricted numbers have appeared in the literature. Comtet [8, page 222] introduced *r*-associated Stirling numbers of the second kind, ${n \atop k}_R$ with $R = \{r, r+1, r+2, \ldots\}$, and obtained recurrence relations and generating functions for them. Belbachir and Bousbaa [2] studied *r*-associated Lah numbers, $L(n,k)_R$ also with $R = \{r, r+1, r+2, \ldots\}$.

Download English Version:

https://daneshyari.com/en/article/8903685

Download Persian Version:

https://daneshyari.com/article/8903685

Daneshyari.com