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1. Introduction

The purpose of this work is to understand the combinatorics associated with lattices
of polygonal subdivisions (equivalently, partial triangulations) of a convex polygon. We
refer to the lattices of polygonal subdivisions we study as oriented flip graphs (see Defi-
nition 3.10). Special cases of these posets include the Tamari lattice, type A Cambrian
lattices [28], oriented exchange graphs of type A cluster algebras [5], and the Stokes poset
of quadrangulations defined by Chapoton [8]. As a consequence of our work, we prove
and generalize Chapoton’s conjecture claiming that the Stokes poset is a lattice [8].

Rather than directly studying polygonal subdivisions, it turns out to be more conve-
nient to formulate our theory in terms of trees that are dual to polygonal subdivisions
of a polygon. That is, our work begins with the initial data of a tree T' embedded in a
disk so that its leaves lie on the boundary and its other vertices lie in the interior of the
disk. This data gives rise to a simplicial complex of noncrossing sets of arcs on this tree
that we call the noncrossing complex, AN (T). One of our main results is that the non-
crossing complex is a pure and thin simplicial complex (see Corollaries 3.6 and 3.9). The
combinatorics of ANC(T) allow us to define our oriented flip graphs, which we denote
by FC(T).

After defining oriented flip graphs, we turn our attention to understanding their lattice
theoretic aspects. In Theorem 4.14, we show that for any tree T, the oriented flip graph
FG(T) is a congruence-uniform lattice. In particular, any oriented flip graph is a lattice.

The Tamari lattice is a standard example of a congruence-uniform lattice [20]; see
also [7], [28]. Reading gave a proof of congruence-uniformity of the Tamari lattice by
proving that the weak order on permutations is congruence-uniform and applying the
lattice quotient map from the weak order to the Tamari lattice defined by Bjorner and
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