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Let n ∈ N, R be a binary relation on [n], and C1(i, j), . . . ,
Cn(i, j) ∈ Z, for i, j ∈ [n]. We define the exponential system 
of equations E(R, (Ck(i, j)i,j,k) to be the system

X
Y

C1(i,j)
1 ···Y Cn(i,j)

n
i = Xj , for (i, j) ∈ R,

in variables X1, . . . , Xn, Y1, . . . , Yn. The aim of this paper 
is to classify precisely which of these systems admit a 
monochromatic solution (Xi, Yi �= 1) in an arbitrary finite 
colouring of the natural numbers. This result could be viewed 
as an analogue of Rado’s theorem for exponential patterns.

© 2018 Published by Elsevier Inc.

1. Introduction

In 2011, Sisto [16] made the surprising observation that an arbitrary 2-colouring of the 
natural numbers admits infinitely many integers a, b > 1 such that a, b, ab all receive the 
same colour. He went on to ask if a similar result holds for k-colourings of the natural 
numbers with k > 2. Brown [3], simplifying and extending the proof of Sisto, gave 
further examples of exponential, monochromatic patterns that are present in an arbitrary 
2-colouring and also proved some weaker results for monochromatic patterns in more 
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colours. In a recent paper [15] we answered Sisto’s question by showing that any finite
colouring of the positive integers admits a, b > 1 such that {a, b, ab} is monochromatic 
and went on to develop, in this context, a theory of patterns defined by compositions 
of the exponential function. In the present paper we turn from the study of patterns 
arising as compositions of the exponential function, to understand exponential patterns 
that arise as solutions to systems of equations. There is a vast literature on finding 
patterns in arbitrary finite partitions of the integers, [1,2,4–9,12,17,13,19] and we refer 
the reader to the introduction in [15] for a brief discussion of this theory or to [6] for a 
indepth survey of the most classical elements of the theory.

The motivation for the study of monochromatic solutions to equations lies in the 
seminal work of Rado [14], who classified the systems of homogeneous linear equations 
that admit a solution in an arbitrary finite colouring of the natural numbers. More 
precisely, we say that an m ×n matrix A is partition regular if every finite colouring of N
admits monochromatic x1, . . . , xn ∈ N, for which Ax = 0, where x = (x1, . . . , xn). Rado 
classified the partition regular matrices by giving a simple criterion on the columns of 
such matrices. It is in this spirit that the present paper sets out.

It is worth pointing out that, even in the classical, linear theory, there is a distinction 
between studying patters which solve linear systems and patterns which arise as fixed 
linear compositions of several free variables. These two types of partition regularity are 
sometimes termed “kernel partition regular” and “image partition regular”, respectively. 
So, while Rado’s theorem gave a complete understanding of what linear systems Ax = 0
can be solved in an arbitrary colouring, it was not until the work Hindman and Leader 
[11] that a classification of “image” partition regular systems was fully understood. We 
refer the reader to the survey of Hindman [10], for details.

Before going further, let us lay out some basic terminology. Let k ∈ N and X be a 
non-empty set. We call a function f : N → X a finite colouring if X is finite, and a 
k-colouring, if |X| ≤ k. As is standard, we refer to the elements of X as colours. We say 
that a collection A, of ordered tuples of integers, is partition regular if for every finite 
colouring f : N → X we can find n ∈ N and x1, . . . , xn ∈ N, such that f(x1) = · · · = f(xn)
and (x1, . . . , xn) ∈ A. We say that a linear system of equations is partition regular if its 
solution set in N is partition regular. We say that an exponential system of equations is 
partition regular if its solution set in N \{1} is partition regular. That is, for exponential 
equations, we only consider solutions where each coordinate at least 2, to remove the 
trivial cases. It shall also be convenient to define the binary operation � as a � b = ab, 
for a, b ∈ N.

For n ∈ N, let R be a binary relation on [n]. Given integers C1(i, j), . . . , Cn(i, j) ∈ Z, 
for i, j ∈ [n], we define the system of equations E (R, {Ck(i, j)}i,j,k) by

X
Y

C1(i,j)
1 ···Y Cn(i,j)

n
i = Xj , for (i, j) ∈ R, (1)

where X1, . . . , Xn, Y1, . . . , Yn are variables.
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