

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Lipschitz polytopes of posets and permutation statistics *

Raman Sanyal^a, Christian Stump^b

- ^a Institut für Mathematik, Goethe-Universität Frankfurt, Germany
- ^b Institut für Mathematik, Technische Universität Berlin, Germany

ARTICLE INFO

Article history: Received 25 August 2017

Keywords:
Posets
Isotone functions
Lipschitz polytopes
Lattice polytopes
Gorenstein polytopes
Permutation statistics

ABSTRACT

We introduce Lipschitz functions on a finite partially ordered set P and study the associated Lipschitz polytope $\mathcal{L}(P)$. The geometry of $\mathcal{L}(P)$ can be described in terms of descent-compatible permutations and permutation statistics that generalize descents and big ascents. For ranked posets, Lipschitz polytopes are centrally-symmetric and Gorenstein, which implies symmetry and unimodality of the statistics. Finally, we define (P,k)-hypersimplices as generalizations of classical hypersimplices and give combinatorial interpretations of their volumes and h^* -vectors.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let (P, \preceq) a finite partially ordered set (or **poset**, for short). A function $f: P \to \mathbb{R}$ is **isotone** or **order preserving** if

$$f(a) \leq f(b)$$
 whenever $a \leq b$.

E-mail addresses: sanyal@math.uni-frankfurt.de (R. Sanyal), stump@math.tu-berlin.de (C. Stump).

 $^{^{\}circ}$ R. Sanyal was supported by the DFG-Collaborative Research Center, TRR 109 "Discretization in Geometry and Dynamics". C. Stump was supported by the DFG grants STU 563/2 "Coxeter–Catalan combinatorics" and STU 563/4-1 "Noncrossing phenomena in Algebra and Geometry".

The order cone $\mathcal{K}(P)$ of P is the collection of nonnegative isotone functions. The order cone is a gateway for a geometric perspective on enumerative problems on posets. The interplay of combinatorics and geometry is, in particular, fueled by analogies to *continues* mathematics. For example, Stanley's order polytope [18] is the set

$$\mathcal{O}(P) = \left\{ f \in \mathcal{K}(P) : \|f\|_{\infty} \le 1 \right\},\,$$

where $||f||_{\infty} = \max\{f(a) : a \in P\}$. The theory of P-partitions concerns those $f \in \mathcal{K}(P)$ with $||f||_1 = \sum_a f(a) = m$ for some fixed m. See [2, Ch. 6] for enumerative consequences of this geometric perspective. In this paper, we want to further the analogies to continuous functions. For two elements $a, b \in P$, we denote the minimal length of a saturated (or unrefineable) chain from a to b by $d_P(a, b)$ and set $d_P(a, b) := \infty$ if $a \not\preceq b$. Then d_P is a quasi-metric on P. An isotone function $f: (P, \preceq) \to \mathbb{R}$ is k-Lipschitz if

$$f(b) - f(a) \leq k \cdot d_P(a, b)$$

for all $a \leq b$. We say that a function f is Lipschitz if f is 1-Lipschitz. Let us write \check{P} for the poset obtained from P by adjoining a minimum $\widehat{0}$. The collection $\widetilde{\mathscr{L}}(\check{P})$ of isotone Lipschitz functions on \check{P} is naturally an unbounded polyhedron and k-Lipschitz functions are precisely the elements in $k \cdot \widehat{\mathscr{L}}(\check{P})$. The lineality space of $\widetilde{\mathscr{L}}(\check{P})$ is given by all constant functions and we define the **Lipschitz polytope** of P as

$$\mathscr{L}(P) \; := \; \left\{ f \in \mathcal{K}(\check{P}) \; : \; f \; \text{Lipschitz}, \; f(\widehat{0}) = 0 \right\}.$$

Concretely, the Lipschitz polytope of (P, \preceq) is given by

$$\mathscr{L}(P) = \left\{ f \in \mathbb{R}^P : \begin{array}{l} 0 \le f(a) \le 1 & \text{for } a \in \min P \\ 0 \le f(b) - f(a) \le 1 & \text{for } a \prec b \end{array} \right\}, \tag{1.1}$$

where $a \prec b$ denotes the cover relations of P.

A different motivation for the study of $\mathscr{L}(P)$ comes from G-Shi arrangements. The Hasse diagram of \check{P} is the directed graph G on nodes \check{P} with arcs (a,b) whenever $a \prec b$ is a cover relation. The corresponding G-Shi arrangement is the arrangement of affine hyperplanes $\{x_b - x_a = 0\}$ and $\{x_b - x_a = 1\}$ for $a \prec b$. The G-Shi arrangements generalize the classical Shi arrangements [16, Ch. 7] and naturally occur in the geometric combinatorics of parking functions and spanning trees; see [8]. The Lipschitz polytope $\mathscr{L}(P)$ is thus a particular (relatively) bounded region of the G-Shi arrangement associated to the Hasse diagram of P.

We give some basic geometric properties of Lipschitz polytopes in Section 2 and, in particular, show that $\mathcal{L}(P)$ is always a lattice polytope. Hence, the function

$$E(\mathcal{L}(P), k) := |k \cdot \mathcal{L}(P) \cap \mathbb{Z}^P|$$

Download English Version:

https://daneshyari.com/en/article/8903738

Download Persian Version:

https://daneshyari.com/article/8903738

<u>Daneshyari.com</u>