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1. Introduction

An extension of Qystein Ore’s result [11, Theorem 7] into the framework of planar
algebras was investigated by the second author. It led to [12, Conjecture 1.6] which admits
two group-theoretical translations dual to each other [12, Theorem 6.11]. One of them
recovers the original theorem and the other is the dual version which we investigate here.

Throughout the paper, an interval of finite groups [H, G| will always mean an interval
in the subgroup lattice of the finite group G, with H as a subgroup.

Section 2 consists of some basics (which are freely used in this introduction) about
lattices, order complex, Cohen—Macaulay posets, edge labeling and GAP coding. In Sec-
tion 3, we first prove a generalization of the following Ore’s theorem to any top Boolean
interval.

Theorem 1.1. Let [H, G| be a distributive interval of finite groups. Then there exists g € G
such that (H,g) = G.

Then we investigate a dual version.

Definition 1.2. Let [H, G] be an interval of finite groups. Its Fuler totient o(H,G) is the
number of cosets Hg such that (Hg) = G. Note that (Hg) = (H, g).

Similar to Hall’s argument in [9], for any K € [H,G], > 1 (s, 1) 9(H, L) is precisely
|K : H|, so by Mobius inversion formula,

p(H,G)= > w(K G)K:H|
Ke[H,G]

Definition 1.3. Let [H, G] be an interval of finite groups. Its dual Euler totient is

$(H,G):= > pu(HK)G: K|
Ke[H,G]

Let [T, G] be the top interval of [H, G]. By the crosscut theorem [16, Corollary 3.9.4],
w(L,G) =0 for all L € [H,G]\ [T, G], so
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