

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

On Boolean intervals of finite groups

Mamta Balodi^a, Sebastien Palcoux^b

^a Department of Mathematics, Indian Institute of Science, Bangalore, India

ARTICLE INFO

Article history: Received 19 November 2016 Available online xxxx

Keywords:
Group
Representation
Lattice
Boolean
Euler totient
Coset poset
Cohen-Macaulay
EL-labeling

ABSTRACT

We prove a dual version of Øystein Ore's theorem on distributive intervals in the subgroup lattice of finite groups, having a nonzero dual Euler totient $\hat{\varphi}$. For any Boolean group-complemented interval, we observe that $\hat{\varphi} = \varphi \neq 0$ by the original Ore's theorem. We also discuss some applications in representation theory. We conjecture that $\hat{\varphi}$ is always nonzero for Boolean intervals. In order to investigate it, we prove that for any Boolean group-complemented interval [H,G], the graded coset poset $\hat{P} = \hat{C}(H,G)$ is Cohen–Macaulay and the nontrivial reduced Betti number of the order complex $\Delta(P)$ is $\hat{\varphi}$, so nonzero. We deduce that these results are true beyond the group-complemented case with |G:H| < 32. One observes that they are also true when H is a Borel subgroup of G.

© 2018 Elsevier Inc. All rights reserved.

Contents

1.	Introd	uction	5(
2.	Prelin	inaries	52
	2.1.	Lattices basics	52
	2.2.	Order complex	53
	2.3.	Cohen–Macaulay posets and edge labeling	54
	2.4.	GAP coding	55
3.	Ore's	theorem and dual version	5.5

E-mail addresses: mamta.balodi@gmail.com (M. Balodi), sebastien.palcoux@gmail.com (S. Palcoux).

^b Institute of Mathematical Sciences, Chennai, India

	3.1.	Ore's theorem on Boolean intervals of finite groups	55	
	3.2.	A dual version of Ore's theorem	56	
	3.3.	Applications to representation theory	60	
4.	Cohen-	-Macaulay coset poset	62	
		Möbius invariant of a coset poset		
	4.2.	An edge labeling for $\hat{C}(H,G)$	64	
	4.3.	Examples	66	
Acknowledgments			68	
References				

1. Introduction

An extension of Øystein Ore's result [11, Theorem 7] into the framework of planar algebras was investigated by the second author. It led to [12, Conjecture 1.6] which admits two group-theoretical translations dual to each other [12, Theorem 6.11]. One of them recovers the original theorem and the other is the dual version which we investigate here.

Throughout the paper, an interval of finite groups [H, G] will always mean an interval in the subgroup lattice of the finite group G, with H as a subgroup.

Section 2 consists of some basics (which are freely used in this introduction) about lattices, order complex, Cohen–Macaulay posets, edge labeling and GAP coding. In Section 3, we first prove a generalization of the following Ore's theorem to any top Boolean interval.

Theorem 1.1. Let [H,G] be a distributive interval of finite groups. Then there exists $g \in G$ such that $\langle H,g \rangle = G$.

Then we investigate a dual version.

Definition 1.2. Let [H,G] be an interval of finite groups. Its Euler totient $\varphi(H,G)$ is the number of cosets Hg such that $\langle Hg \rangle = G$. Note that $\langle Hg \rangle = \langle H,g \rangle$.

Similar to Hall's argument in [9], for any $K \in [H, G]$, $\sum_{L \in [H, K]} \varphi(H, L)$ is precisely |K: H|, so by Möbius inversion formula,

$$\varphi(H,G) = \sum_{K \in [H,G]} \mu(K,G)|K:H|.$$

Definition 1.3. Let [H,G] be an interval of finite groups. Its dual Euler totient is

$$\hat{\varphi}(H,G):=\sum_{K\in[H,G]}\mu(H,K)|G:K|.$$

Let [T,G] be the top interval of [H,G]. By the crosscut theorem [16, Corollary 3.9.4], $\mu(L,G)=0$ for all $L\in[H,G]\setminus[T,G]$, so

Download English Version:

https://daneshyari.com/en/article/8903746

Download Persian Version:

https://daneshyari.com/article/8903746

<u>Daneshyari.com</u>