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1. Introduction
1.1. Background

A hyperplane arrangement A = {Hy,..., H,} is a finite collection of affine hyper-
planes in an /-dimensional vector space K. Despite its simplicity, the theory of hyper-
plane arrangements has fruitful connections with many areas in mathematics ([20,23]).
One of the most important invariants of an arrangement A is the characteristic poly-
nomial x(A,t) € Z[t]. Indeed the characteristic polynomial is related to several other
invariants, such as the Poincaré polynomial of the complexified complement M (A) [19],
the number of chambers for real arrangements [31], the number of F -rational points
[10,26], Chern classes of certain vector bundles [18,1], and lattice points countings
[7,14-16,30].

1.2. Main results

Let V = R be an /-dimensional Euclidean space. Let ® C V* be an irreducible root
system. Fix a positive system ®* C ®. For a positive root o € ®* and k € Z, define

Hyr={xeV|alz) =k}

The set of all such hyperplanes is called the affine Weyl arrangement. Finite truncations
of the affine Weyl arrangement have received considerable attention ([2-5,11,21,22,27,
29]). Among others, the (extended) Linial arrangement £} is defined by

BW={Hopp|ae€d®  k=1,2...,m},

(where £§ = 0 by convention). In [21], Postnikov and Stanley studied combinatorial
aspects of Linial arrangements. They posed the following conjecture.

Conjecture 1.1 ([21, Conjecture 9.14]). Suppose m > 1. Then every root a € C of the

mh where h denotes the Coxeter number of ®.

equation x(Lg',t) = 0 satisfies Rea = 7,
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