Classes and equivalence of linear sets in $\operatorname{PG}\left(1, q^{n}\right)^{\text {wh}}$

Bence Csajbók ${ }^{\text {a,b }}$, Giuseppe Marino ${ }^{\text {b }}$, Olga Polverino ${ }^{\text {b }}$
${ }^{\text {a }}$ MTA-ELTE Geometric and Algebraic Combinatorics Research Group, ELTE
Eötvös Loránd University, Budapest, Hungary, Department of Geometry, 1117
Budapest, Pázmány P. stny. 1/C, Hungary
b Dipartimento di Matematica e Fisica, Università degli Studi della Campania
"Luigi Vanvitelli", Viale Lincoln 5, I-81100 Caserta, Italy

A R T I C L E I N F O

Article history:

Received 12 April 2016
Available online xxxx

Keywords:

Linearized polynomial
Linear set
Blocking set
MRD-code

Abstract

The equivalence problem of \mathbb{F}_{q}-linear sets of rank n of $\operatorname{PG}\left(1, q^{n}\right)$ is investigated, also in terms of the associated variety, projecting configurations, \mathbb{F}_{q}-linear blocking sets of Rédei type and MRD-codes. We call an \mathbb{F}_{q}-linear set L_{U} of rank n in $\mathrm{PG}\left(W, \mathbb{F}_{q^{n}}\right)=\mathrm{PG}\left(1, q^{n}\right)$ simple if for any n-dimensional \mathbb{F}_{q}-subspace V of W, L_{V} is $\operatorname{P\Gamma L}\left(2, q^{n}\right)$-equivalent to L_{U} only when U and V lie on the same orbit of $\Gamma \mathrm{L}\left(2, q^{n}\right)$. We prove that $U=\left\{\left(x, \operatorname{Tr}_{q^{n} / q}(x)\right): x \in \mathbb{F}_{q^{n}}\right\}$ defines a simple \mathbb{F}_{q}-linear set for each n. We provide examples of non-simple linear sets not of pseudoregulus type for $n>4$ and we prove that all \mathbb{F}_{q}-linear sets of rank 4 are simple in PG(1, $\left.q^{4}\right)$.

© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Linear sets are natural generalizations of subgeometries. Let $\Lambda=\operatorname{PG}\left(W, \mathbb{F}_{q^{n}}\right)=$ $P G\left(r-1, q^{n}\right)$, where W is a vector space of dimension r over $\mathbb{F}_{q^{n}}$. A point set L of Λ is said to be an \mathbb{F}_{q}-linear set of Λ of rank k if it is defined by the non-zero vectors of a k-dimensional \mathbb{F}_{q}-vector subspace U of W, i.e.

$$
L=L_{U}=\left\{\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}}: \mathbf{u} \in U \backslash\{\mathbf{0}\}\right\}
$$

The maximum field of linearity of an $\mathbb{F}_{q^{-}}$-linear set L_{U} is $\mathbb{F}_{q^{t}}$ if $t \mid n$ is the largest integer such that L_{U} is an $\mathbb{F}_{q^{t}}$ linear set. In the recent years, starting from the paper [21] by Lunardon, linear sets have been used to construct or characterize various objects in finite geometry, such as blocking sets and multiple blocking sets in finite projective spaces, two-intersection sets in finite projective spaces, translation spreads of the Cayley Generalized Hexagon, translation ovoids of polar spaces, semifield flocks and finite semifields. For a survey on linear sets we refer the reader to [28], see also [17].

One of the most natural questions about linear sets is their equivalence. Two linear sets L_{U} and L_{V} of $\mathrm{PG}\left(r-1, q^{n}\right)$ are said to be PCL-equivalent (or simply equivalent) if there is an element φ in $\operatorname{P\Gamma L}\left(r, q^{n}\right)$ such that $L_{U}^{\varphi}=L_{V}$. In the applications it is crucial to have methods to decide whether two linear sets are equivalent or not. For $f \in \Gamma L\left(r, q^{n}\right)$ we have $L_{U^{f}}=L_{U}^{\varphi_{f}}$, where φ_{f} denotes the collineation of $\operatorname{PG}\left(W, \mathbb{F}_{q^{n}}\right)$ induced by f. It follows that if U and V are \mathbb{F}_{q}-subspaces of W belonging to the same orbit of $\Gamma \mathrm{L}\left(r, q^{n}\right)$, then L_{U} and L_{V} are equivalent. The above condition is only sufficient but not necessary to obtain equivalent linear sets. This follows also from the fact that \mathbb{F}_{q}-subspaces of W with different ranks can define the same linear set, for example \mathbb{F}_{q}-linear sets of $\operatorname{PG}\left(r-1, q^{n}\right)$ of rank $k \geq r n-n+1$ are all the same: they coincide with $\operatorname{PG}\left(r-1, q^{n}\right)$. As it was showed recently in [8], if $r=2$, then there exist \mathbb{F}_{q}-subspaces of W of the same rank n but on different orbits of $\Gamma \mathrm{L}\left(2, q^{n}\right)$ defining the same linear set of $\operatorname{PG}\left(1, q^{n}\right)$.

This observation motivates the following definition. An $\mathbb{F}_{q^{-}}$-linear set L_{U} of $\operatorname{PG}\left(W, \mathbb{F}_{q^{n}}\right)$ $=\mathrm{PG}\left(r-1, q^{n}\right)$ with maximum field of linearity \mathbb{F}_{q} is called simple if for each \mathbb{F}_{q}-subspace V of $W, L_{U}=L_{V}$ only if U and V are in the same orbit of $\Gamma \mathrm{L}\left(r, q^{n}\right)$ or, equivalently, if for each \mathbb{F}_{q}-subspace V of W, L_{V} is $\operatorname{P\Gamma L}\left(r, q^{n}\right)$-equivalent to L_{U} only if U and V are in the same orbit of $\Gamma \mathrm{L}\left(r, q^{n}\right)$.

Natural examples of simple linear sets are the subgeometries (cf. [20, Theorem 2.6] and $\left[16\right.$, Section 25.5]). In [6] it was proved that \mathbb{F}_{q}-linear sets of rank $n+1$ of $\mathrm{PG}\left(2, q^{n}\right)$ admitting $(q+1)$-secants are simple. This allowed the authors to translate the question of equivalence to the study of the orbits of the stabilizer of a subgeometry on subspaces and hence to obtain the complete classification of \mathbb{F}_{q}-linear blocking sets in $\mathrm{PG}\left(2, q^{4}\right)$. Until now, the only known examples of non-simple linear sets are those of pseudoregulus type of PG($1, q^{n}$) for $n \geq 5$ and $n \neq 6$, see [8].

In this paper we focus on linear sets of rank n of $\mathrm{PG}\left(1, q^{n}\right)$. We first introduce a method which can be used to find non-simple linear sets of rank n of $\operatorname{PG}\left(1, q^{n}\right)$. Let L_{U} be a

https://daneshyari.com/en/article/8903770

Download Persian Version:
https://daneshyari.com/article/8903770

Daneshyari.com

[^0]: the research was supported by Ministry of Education, University and Research of Italy MIUR (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The first author was partially supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by OTKA Grant No. K 124950.

 E-mail addresses: csajbokb@cs.elte.hu (B. Csajbók), giuseppe.marino@unicampania.it (G. Marino), olga.polverino@unicampania.it (O. Polverino).

