

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Classes and equivalence of linear sets in $PG(1, q^n)$

Bence Csajbók $^{\mathrm{a},\mathrm{b}},$ Giuseppe Marino $^{\mathrm{b}},$ Olga Polverino $^{\mathrm{b}}$

^a MTA-ELTE Geometric and Algebraic Combinatorics Research Group, ELTE Eötvös Loránd University, Budapest, Hungary, Department of Geometry, 1117 Budapest, Pázmány P. stny. 1/C, Hungary ^b Dipartimento di Matematica e Fisica, Università degli Studi della Campania

"Luigi Vanvitelli", Viale Lincoln 5, I-81100 Caserta, Italy

ARTICLE INFO

Article history: Received 12 April 2016 Available online xxxx

Keywords: Linearized polynomial Linear set Blocking set MRD-code

ABSTRACT

The equivalence problem of \mathbb{F}_q -linear sets of rank n of $\mathrm{PG}(1,q^n)$ is investigated, also in terms of the associated variety, projecting configurations, \mathbb{F}_q -linear blocking sets of Rédei type and MRD-codes. We call an \mathbb{F}_q -linear set L_U of rank n in $\mathrm{PG}(W,\mathbb{F}_{q^n}) = \mathrm{PG}(1,q^n)$ simple if for any n-dimensional \mathbb{F}_q -subspace V of W, L_V is $\mathrm{PFL}(2,q^n)$ -equivalent to L_U only when U and V lie on the same orbit of $\mathrm{FL}(2,q^n)$. We prove that $U = \{(x,\mathrm{Tr}_{q^n/q}(x))\colon x \in \mathbb{F}_{q^n}\}$ defines a simple \mathbb{F}_q -linear set for each n. We provide examples of non-simple linear sets not of pseudoregulus type for n > 4 and we prove that all \mathbb{F}_q -linear sets of rank 4 are simple in $\mathrm{PG}(1,q^4)$.

© 2018 Elsevier Inc. All rights reserved.

 $^{^{*}}$ The research was supported by Ministry of Education, University and Research of Italy MIUR (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA – INdAM). The first author was partially supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by OTKA Grant No. K 124950.

E-mail addresses: csajbokb@cs.elte.hu (B. Csajbók), giuseppe.marino@unicampania.it (G. Marino), olga.polverino@unicampania.it (O. Polverino).

1. Introduction

Linear sets are natural generalizations of subgeometries. Let $\Lambda = \operatorname{PG}(W, \mathbb{F}_{q^n}) = PG(r-1, q^n)$, where W is a vector space of dimension r over \mathbb{F}_{q^n} . A point set L of Λ is said to be an \mathbb{F}_q -linear set of Λ of rank k if it is defined by the non-zero vectors of a k-dimensional \mathbb{F}_q -vector subspace U of W, i.e.

$$L = L_U = \{ \langle \mathbf{u} \rangle_{\mathbb{F}_{a^n}} : \mathbf{u} \in U \setminus \{\mathbf{0}\} \}$$

The maximum field of linearity of an \mathbb{F}_q -linear set L_U is \mathbb{F}_{q^t} if $t \mid n$ is the largest integer such that L_U is an \mathbb{F}_{q^t} -linear set. In the recent years, starting from the paper [21] by Lunardon, linear sets have been used to construct or characterize various objects in finite geometry, such as blocking sets and multiple blocking sets in finite projective spaces, two-intersection sets in finite projective spaces, translation spreads of the Cayley Generalized Hexagon, translation ovoids of polar spaces, semifield flocks and finite semifields. For a survey on linear sets we refer the reader to [28], see also [17].

One of the most natural questions about linear sets is their equivalence. Two linear sets L_U and L_V of $\operatorname{PG}(r-1,q^n)$ are said to be $\operatorname{P\GammaL}$ -equivalent (or simply equivalent) if there is an element φ in $\operatorname{P\GammaL}(r,q^n)$ such that $L_U^{\varphi} = L_V$. In the applications it is crucial to have methods to decide whether two linear sets are equivalent or not. For $f \in \operatorname{\GammaL}(r,q^n)$ we have $L_{Uf} = L_U^{\varphi_f}$, where φ_f denotes the collineation of $\operatorname{PG}(W, \mathbb{F}_{q^n})$ induced by f. It follows that if U and V are \mathbb{F}_q -subspaces of W belonging to the same orbit of $\operatorname{\GammaL}(r,q^n)$, then L_U and L_V are equivalent. The above condition is only sufficient but not necessary to obtain equivalent linear sets. This follows also from the fact that \mathbb{F}_q -subspaces of W with different ranks can define the same linear set, for example \mathbb{F}_q -linear sets of $\operatorname{PG}(r-1,q^n)$ of rank $k \geq rn-n+1$ are all the same: they coincide with $\operatorname{PG}(r-1,q^n)$. As it was showed recently in [8], if r = 2, then there exist \mathbb{F}_q -subspaces of W of the same rank n but on different orbits of $\operatorname{\GammaL}(2,q^n)$ defining the same linear set of $\operatorname{PG}(1,q^n)$.

This observation motivates the following definition. An \mathbb{F}_q -linear set L_U of $\mathrm{PG}(W, \mathbb{F}_{q^n})$ = $\mathrm{PG}(r-1, q^n)$ with maximum field of linearity \mathbb{F}_q is called *simple* if for each \mathbb{F}_q -subspace V of W, $L_U = L_V$ only if U and V are in the same orbit of $\mathrm{\GammaL}(r, q^n)$ or, equivalently, if for each \mathbb{F}_q -subspace V of W, L_V is $\mathrm{P\GammaL}(r, q^n)$ -equivalent to L_U only if U and V are in the same orbit of $\mathrm{\GammaL}(r, q^n)$.

Natural examples of simple linear sets are the subgeometries (cf. [20, Theorem 2.6] and [16, Section 25.5]). In [6] it was proved that \mathbb{F}_q -linear sets of rank n + 1 of PG(2, q^n) admitting (q + 1)-secants are simple. This allowed the authors to translate the question of equivalence to the study of the orbits of the stabilizer of a subgeometry on subspaces and hence to obtain the complete classification of \mathbb{F}_q -linear blocking sets in PG(2, q^4). Until now, the only known examples of non-simple linear sets are those of pseudoregulus type of PG(1, q^n) for $n \geq 5$ and $n \neq 6$, see [8].

In this paper we focus on linear sets of rank n of $PG(1, q^n)$. We first introduce a method which can be used to find non-simple linear sets of rank n of $PG(1, q^n)$. Let L_U be a

Download English Version:

https://daneshyari.com/en/article/8903770

Download Persian Version:

https://daneshyari.com/article/8903770

Daneshyari.com