

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Some extremal results on complete degenerate hypergraphs

Jie Ma^{a,1}, Xiaofan Yuan^b, Mingwei Zhang^a

 ^a School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
 ^b School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

ARTICLE INFO

Article history: Received 30 December 2016

Keywords: Turán number Degenerate hypergraph Random algebraic method Alon–Shikhelman

ABSTRACT

Let $K_{s_1,s_2,\cdots,s_r}^{(r)}$ be the complete *r*-partite *r*-uniform hypergraph and $ex(n, K_{s_1,s_2}^{(r)}, \cdots, s_r)$ be the maximum number of edges in any *n*-vertex $K_{s_1,s_2}^{(r)}, \cdots, s_r$ -free *r*-uniform hypergraph. It is well-known in the graph case [19,18] that $ex(n, K_{s,t}) = \Theta(n^{2-1/s})$ when *t* is sufficiently larger than *s*. In this note, we generalize the above to hypergraphs by showing that if s_r is sufficiently larger than $s_1, s_2, \cdots, s_{r-1}$ then

$$ex(n, K_{s_1, s_2, \cdots, s_r}^{(r)}) = \Theta\left(n^{r - \frac{1}{s_1 s_2 \cdots s_{r-1}}}\right)$$

This follows from a more general Turán type result we establish in hypergraphs, which also improves and generalizes some recent results of Alon and Shikhelman [2]. The lower bounds of our results are obtained by the powerful random algebraic method of Bukh [6]. Another new, perhaps unsurprising insight which we provide here is that one can also use the random algebraic method to construct non-degenerate (hyper-)graphs for various Turán type problems.

E-mail addresses: jiema@ustc.edu.cn (J. Ma), xyuan62@math.gatech.edu (X. Yuan), zmw309@mail.ustc.edu.cn (M. Zhang).

¹ Research partially supported by NSFC grants 11501539 and 11622110.

The asymptotics for $ex(n, K_{s_1, s_2, \cdots, s_r}^{(r)})$ is also proved by Verstraëte [25] independently with a different approach. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let $r \geq 2$ be an integer and H, F be two r-uniform hypergraphs. An r-uniform hypergraph is called *F*-free if it contains no copy of *F* as its subhypergraph. For any integer n, let ex(n, H, F) be the maximum number of copies of H in an n-vertex *F*-free r-uniform hypergraph. In case H is a single edge, this function then converts to the Turán number ex(n, F) of the hypergraph *F*.

The study of Turán numbers ex(n, F) is the main focus of the extremal graph theory. This was initiated by the celebrated theorems of Mantel [21] and Turán [24], which determine the precise value of ex(n, F) when F is a complete graph. For general graphs F, Erdős–Stone and Simonovits [13,12,23] resolved Turán numbers ex(n, F) asymptotically, except for bipartite graphs F (which are often called the *degenerate graphs*). Even to date there are still few degenerate graphs the asymptotics of whose Turán numbers are known. One of such examples is the complete bipartite graph $K_{s,t}$. A well-known theorem of Kővári, Sós and Turán [19] shows that $ex(n, K_{s,t}) = O(n^{2-1/s})$ for any integers $t \ge s$. For s = 2, 3, matched lower bounds were found in [11,5] respectively; for other values of s, this bound was known to be tight when t is sufficiently larger than s, which was first proved by Kollár, Rónyai and Szabó [18] and then slightly improved to t > (s - 1)! by Alon, Rónyai and Szabó [1]. Recently, Blagojević, Bukh and Karasev [3] and Bukh [6] used the random algebraic method to give different constructions which yield the same lower bound $ex(n, K_{s,t}) = \Omega(n^{2-1/s})$ as in [18,1], provided that t is sufficiently large. For more extremal results on generate graphs, we refer to the survey [14].

For the function ex(n, H, F) where H, F are graphs and H is not an edge, there are only sporadic results such as [9,4,16] in the literature, until recently Alon and Shikhelman [2] systematically investigate this general function and obtain a number of results on complete graphs, complete bipartite graphs and trees. Among other results, they proved in [2] that for $s \ge 2m - 2$ and $t \ge (s - 1)! + 1$,

$$ex(n, K_m, K_{s,t}) = \Theta\left(n^{m - \frac{m(m-1)}{2s}}\right)$$
(1)

and for $(a-1)! + 1 \le b < (s+1)/2$ and $t \ge s$,

$$ex(n, K_{a,b}, K_{s,t}) = \Theta\left(n^{a+b-ab/s}\right).$$
(2)

By contrast with the graph case, very little was known for the hypergraph Turán problems. (For instance, it is not known the value of ex(n, F) when F is a complete

Download English Version:

https://daneshyari.com/en/article/8903824

Download Persian Version:

https://daneshyari.com/article/8903824

Daneshyari.com