

Turán number of generalized triangles

S. Norin, L. Yepremyan

A R T I C L E I N F O

Article history:

Received 3 May 2015

Keywords:

Generalized triangle
Blowups
Turán number
Steiner systems
Symmetrization
Stability
Lagrangian function
Weighted hypergraphs

Abstract

The family Σ_{r} consists of all r-graphs with three edges D_{1}, D_{2}, D_{3} such that $\left|D_{1} \cap D_{2}\right|=r-1$ and $D_{1} \triangle D_{2} \subseteq D_{3}$. A generalized triangle, $\mathcal{T}_{r} \in \Sigma_{r}$ is an r-graph on $\{1,2, \ldots, 2 r-$ $1\}$ with three edges D_{1}, D_{2}, D_{3}, such that $D_{1}=\{1,2, \ldots, r-$ $1, r\}, D_{2}=\{1,2, \ldots, r-1, r+1\}$ and $D_{3}=\{r, r+1, \ldots, 2 r-1\}$. Frankl and Füredi conjectured that for all $r \geq 4$, ex $\left(n, \Sigma_{r}\right)=$ $\operatorname{ex}\left(n, \mathcal{T}_{r}\right)$ for all sufficiently large n and they also proved it for $r=3$. Later, Pikhurko showed that the conjecture holds for $r=4$. In this paper we determine $\operatorname{ex}\left(n, \mathcal{T}_{5}\right)$ and $\operatorname{ex}\left(n, \mathcal{T}_{6}\right)$ for sufficiently large n, proving the conjecture for $r=5,6$.

© 2016 Published by Elsevier Inc.

1. Introduction

In this paper we consider r-uniform hypergraphs, which we call r-graphs for brevity. We denote the vertex set of an r-graph \mathcal{G} by $V(\mathcal{G})$ and the number of its vertices by $\mathrm{v}(\mathcal{G})$. Let \mathfrak{F} be a family of r-graphs. An r-graph \mathcal{G} is \mathfrak{F}-free if it does not contain any member of \mathfrak{F} as a subgraph. The Turán function $\operatorname{ex}(n, \mathfrak{F})$ is the maximum size of an \mathfrak{F}-free r-graph of order n :

$$
\operatorname{ex}(n, \mathfrak{F})=\max \{|\mathcal{G}|: \mathrm{v}(\mathcal{G})=n \text { and } \mathcal{G} \text { is } \mathfrak{F} \text {-free }\}
$$

[^0]When \mathfrak{F} contains just one element, say $\mathfrak{F}:=\{\mathcal{F}\}$, we write $\operatorname{ex}(n, \mathcal{F}):=\operatorname{ex}(n, \mathfrak{F})$. Let \mathfrak{T}_{r} be the family of all r-graphs with three edges such that one edge contains the symmetric difference of the other two, and let Σ_{r} be the family of all r-graphs with three edges D_{1}, D_{2}, D_{3} such that $\left|D_{1} \cap D_{2}\right|=r-1$ and $D_{1} \triangle D_{2} \subseteq D_{3}$. A generalized triangle, $\mathcal{T}_{r} \in \Sigma_{r}$ is an r-graph on $[2 r-1]$ with three edges D_{1}, D_{2}, D_{3}, such that $D_{1}=\{1,2, \ldots, r-$ $1, r\}, D_{2}=\{1,2, \ldots, r-1, r+1\}$ and $D_{3}=\{r, r+1, \ldots, 2 r-1\}$.

Note that $\mathcal{T}_{r} \in \Sigma_{r}$ and $\Sigma_{r} \subseteq \mathfrak{T}_{r}$. Note also that for $r=2,3, \Sigma_{r}=\mathfrak{T}_{r}$. As a generalization of Turán's theorem, in [8] Katona suggested to determine ex $\left(n, \mathfrak{T}_{3}\right)$. This question was answered by Bollobás in [2]. He showed that for any $n \geq 3$ the complete balanced 3-partite 3 -graph (that is, the sizes of any two parts differ at most by one) is the unique extremal graph. Hence,

$$
\operatorname{ex}\left(n, \mathfrak{T}_{3}\right)=\left\lfloor\frac{n}{3}\right\rfloor \times\left\lfloor\frac{n+1}{3}\right\rfloor \times\left\lfloor\frac{n+2}{3}\right\rfloor .
$$

Bollobás conjectured that the same result holds for all $r \geq 4$. In [16] Sidorenko proved the conjecture for $r=4$, in fact he showed that $\operatorname{ex}\left(n, \mathfrak{T}_{4}\right)=\operatorname{ex}\left(n, \Sigma_{4}\right)$ and determined the latter. However, Shearer [15] showed that Bollobás conjecture fails for $r \geq 10$.

But what can be said about the relation between $\operatorname{ex}\left(n, \mathcal{T}_{r}\right)$ and ex $\left(n, \Sigma_{r}\right)$? In [3], Erdős and Simonovits proved that for any fixed r

$$
\operatorname{ex}\left(n, \mathcal{T}_{r}\right)-\operatorname{ex}\left(n, \Sigma_{r}\right)=o\left(n^{r}\right)
$$

Later, in [5] Frankl and Füredi conjectured that these numbers are the same for sufficiently large n.

Conjecture 1.1 (P. Frankl, Z. Füredi, [5]). For every $r \geq 4$, there exists $n_{0}:=n_{0}(r)$ such that for all $n \geq n_{0}$

$$
\operatorname{ex}\left(n, \mathcal{T}_{r}\right)=\operatorname{ex}\left(n, \Sigma_{r}\right)
$$

In their previous work [4], Frankl and Füredi showed that Conjecture 1.1 holds for $r=3$ with very large n_{0}. Keevash and Mubayi [10] presented a different proof of this result; they showed that one can take $n_{0}=33$. Recently, the conjecture for $r=4$ was proved by Pikhurko [13]. We show that the conjecture holds for $r=5,6$.

Theorem 1.1. There exists n_{0} such that for all $n \geq n_{0}$, $\operatorname{ex}\left(n, \mathcal{T}_{r}\right)=\operatorname{ex}\left(n, \Sigma_{r}\right)$ for $r=$ 5,6. Moreover, extremal graphs are blowups of the unique $(11,5,4)$ and $(12,6,5)$ Steiner systems for $r=5$ and $r=6$, respectively.

For general $r \geq 7$ the problem of determining $\operatorname{ex}\left(n, \Sigma_{r}\right)$, even asymptotically, remains open. The following bounds were proved in [5].

https://daneshyari.com/en/article/8903828

Download Persian Version:

https://daneshyari.com/article/8903828

Daneshyari.com

[^0]: E-mail address: yepremyan@maths.ox.ac.uk (L. Yepremyan).

