Journal of Combinatorial Theory, Series B ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

A stability theorem for maximal K_{r+1} -free graphs

Kamil Popielarz, Julian Sahasrabudhe, Richard Snyder

 $Department\ of\ Mathematics,\ University\ of\ Memphis,\ Memphis,\ TN,\ United\ States$ of America

ARTICLE INFO

Article history: Received 11 November 2016 Available online xxxx

Keywords: Stability Saturation Kr-free graphs Erdős-Simonovits Turán-type problem

ABSTRACT

For $r \geq 2$, we show that every maximal K_{r+1} -free graph G on n vertices with $(1-\frac{1}{r})\frac{n^2}{2}-o(n^{\frac{r+1}{r}})$ edges contains a complete r-partite subgraph on (1-o(1))n vertices. We also show that this is best possible. This result answers a question of Tyomkyn and Uzzell.

© 2018 Published by Elsevier Inc.

1. Introduction

For a positive integer $r \geq 2$, a graph G is said to be (r+1)-saturated (or maximal K_{r+1} -free) if it contains no copy of K_{r+1} , but the addition of any edge from the complement \overline{G} creates at least one copy of K_{r+1} . Let $T_r(n)$ denote the r-partite Turán graph that is, the n-vertex, complete r-partite graph for which each of the r classes is of order $\lfloor n/r \rfloor$ or $\lceil n/r \rceil$. We write $t_r(n) = e(T_r(n))$, and note that $t_r(n) = (1 - \frac{1}{r})\frac{n^2}{2} + O_r(1)$. Whenever we speak of an r-partite subgraph, we require that it is induced.

The classical theorem of Turán [12] tells us that, for an integer $r \geq 2$, the maximum number of edges in a graph not containing a K_{r+1} is $t_r(n)$, and that $T_r(n)$ is the unique K_{r+1} -free graph attaining this maximum. Erdős and Simonovits [6,5,11] discovered that

E-mail addresses: kamil.popielarz@gmail.com (K. Popielarz), julian.sahasra@gmail.com (J. Sahasrabudhe), rsnyder1@memphis.edu (R. Snyder).

https://doi.org/10.1016/j.jctb.2018.04.001 0095-8956/© 2018 Published by Elsevier Inc. this extremal problem exhibits a certain 'stability' phenomenon: K_{r+1} -free graphs for which e(G) is close to $t_r(n)$ must resemble the Turán graph in an appropriate sense. In particular, they proved that every n-vertex, K_{r+1} -free graph with at least $t_r(n) - o(n^2)$ edges can be transformed into $T_r(n)$ by making at most $o(n^2)$ edge deletions and additions.

Beyond the seminal work of Erdős and Simonovits, we are lead to consider finer aspects of this phenomenon. More generally, it is natural to ask how the structure of a K_{r+1} -free graph G comes to resemble the Turán graph as the number of edges e(G) approaches the Turán number $t_r(n)$. For instance, Nikiforov and Rousseau [10], in the context of a Ramsey-theoretic problem, showed that for $r \geq 2$ and ε sufficiently small (depending on r) the following holds: if G is an n-vertex K_{r+1} -free graph with $e(G) \geq (1 - \frac{1}{r} - \varepsilon) n^2/2$, then G contains an induced r-partite subgraph H with $|H| \geq (1 - 2\varepsilon^{1/3})n$ and $\delta(H) \geq (1 - \frac{1}{r} - 4\varepsilon^{1/3})n$. In other words, G must contain a large r-partite subgraph with minimum degree almost as large as $\delta(T_r(n))$. The interested reader should consult the survey of Nikiforov [9] for a few other stability results in a similar vein.

Another result concerning the finer structure of stability is due to Brouwer [4], who showed that if $n \ge 2r + 1$ and G is a K_{r+1} -free graph with $e(G) \ge t_r(n) - \lfloor \frac{n}{r} \rfloor + 2$, then G must be r-partite. This result has further been rediscovered by several authors [1,7,8], and Tyomkyn and Uzzell [13] recently gave a new proof. In this paper, we are interested in the structure of maximal K_{r+1} -free graphs near the Turán threshold. In this context, Brouwer's result says that if the number of edges of an (r+1)-saturated graph G is roughly within n/r of the Turán number $t_r(n)$, then G is complete r-partite. A natural question then arises, which informally is: when can one guarantee 'almost-spanning' complete r-partite subgraphs in (r+1)-saturated graphs?

Continuing this line of investigation, Tyomkyn and Uzzell [13] proved, among other results, that every 4-saturated graph on n vertices and with $t_3(n) - cn$ edges contains a complete 3-partite graph on (1 - o(1))n vertices (they also implicitly dealt with the 3-saturated case). They went on to ask if one can similarly find almost-spanning, complete r-partite subgraphs in (r + 1)-saturated graphs with many edges, for $r \geq 4$. The main result of this paper is to resolve the question of Tyomkyn and Uzzell, in a stronger form. Not only do we show that this phenomenon persists for (r + 1)-saturated graphs for all $r \geq 2$, but we also determine the edge threshold for which the result fails to hold. In particular, we show the following.

Theorem 1.1. Let $r \geq 2$ be an integer. Every (r+1)-saturated graph G on n vertices with $t_r(n) - o(n^{\frac{r+1}{r}})$ edges contains a complete r-partite subgraph on (1 - o(1))n vertices.

We also show that this theorem is tight in the sense that for every $\delta > 0$ there exist graphs G with $t_r(n) - \delta n^{\frac{r+1}{r}}$ edges for which the conclusion of Theorem 1.1 fails.

We actually deduce Theorem 1.1 from a stronger, quantitative result, which we now make precise. For a graph G and an integer $r \geq 2$, define the graph parameter

$$g_r(G) = \min\{|T| : T \subseteq V(G), G - T \text{ is complete } r\text{-partite}\}.$$

Download English Version:

https://daneshyari.com/en/article/8903842

Download Persian Version:

https://daneshyari.com/article/8903842

Daneshyari.com