

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Journal of Combinatorial Theory

The Erdős–Pósa property for edge-disjoint immersions in 4-edge-connected graphs

Naonori Kakimura $^{\mathrm{a},1},$ Ken-ichi Kawarabayashi $^{\mathrm{b},2}$

^a Department of Mathematics, Keio University, Japan

^b National Institute of Informatics, and JST ERATO Kawarabayashi Large Graph Project, Japan

ARTICLE INFO

Article history: Received 30 January 2014 Available online 22 February 2018

Keywords: Immersion Packing Covering 4-Edge-connected graphs

ABSTRACT

A graph H is *immersed* in a graph G if the vertices of H are mapped to distinct vertices of G, and the edges of H are mapped to paths joining the corresponding pairs of vertices of G, in such a way that the paths are pairwise edge-disjoint. In this paper, we show that the Erdős–Pósa property holds for packing edge-disjoint K_t -immersions in 4-edge-connected graphs. More precisely, for positive integers k and t, there exists a constant f(k,t) such that a 4-edge-connected graph G has either k edge-disjoint K_t -immersions, or an edge subset F of size at most f(k, t) such that G-F has no K_t -immersion. The 4-edge-connectivity in this statement is best possible in the sense that 3-edge-connected graphs do not have the Erdős–Pósa property.

© 2018 Elsevier Inc. All rights reserved.

E-mail addresses: kakimura@math.keio.ac.jp (N. Kakimura), k_keniti@nii.ac.jp (K. Kawarabayashi).

¹ Supported by JST ERATO Grant Number JPMJER1201, and JSPS KAKENHI Grant Number JP17K00028.

 $^2\,$ Supported by JST ERATO Grant Number JPMJER1201.

 $\label{eq:https://doi.org/10.1016/j.jctb.2018.02.003} 0095-8956/© 2018$ Elsevier Inc. All rights reserved.

1. Introduction

1.1. Erdős–Pósa property

A family \mathcal{F} of graphs is said to have the $Erdős-Pósa\ property$ if for every integer k there is an integer $f(k, \mathcal{F})$ such that every graph G contains either k vertex-disjoint (edge-disjoint, resp.) subgraphs each isomorphic to a graph in \mathcal{F} or a set X of at most $f(k, \mathcal{F})$ vertices (edges, resp.) such that G-X has no subgraph isomorphic to a graph in \mathcal{F} . The term $Erdős-Pósa\ property$ arose because $Erdős\ and\ Pósa\ [5]$ prove that the family of cycles has this property. Other families of graphs having the $Erdős-Pósa\ property$ are the one of cycles of even length [26] and the one of (even) cycles through specified vertices [7,9,16]. Furthermore, there is the seminal result of Robertson and Seymour [18] which says that, for a fixed graph H, the family of H-minors has the $Erdős-Pósa\ property$ if and only if H is planar.

In this paper, we investigate the Erdős–Pósa property for an edge-disjoint variant of minors for a fixed graph, called *immersions*. For two graphs G and H, an *immersion*³ of H in G is a map η such that

- $\eta(v) \in V(G)$ for each $v \in V(H)$ and $\eta(u) \neq \eta(v)$ for distinct $u, v \in V(H)$
- for each edge e = uv of H, $\eta(e)$ is a path of G from $\eta(u)$ to $\eta(v)$
- if $e, f \in E(H)$ are distinct, then $\eta(e)$ and $\eta(f)$ have no edges in common, although they may share vertices.

The image of η is called an *H*-immersion.

The immersion relation seems to be similar to the minor relation. In fact, structural approach has been extremely successful for immersions. Robertson and Seymour [23] extended their proof of the famous Wagner's conjecture [22] to prove that graphs are well-quasi-ordered by the immersion relation, which proves a conjecture of Nash-Williams. Recently, the immersion relation has attracted a lot of attention from the graph theory community [2,11,15,27].

Similarly to the minor case, the Erdős–Pósa property does not hold for edgedisjoint immersions of a fixed nonplanar graph. Indeed, consider finding edge-disjoint K_5 -immersions. Let G = (V, E) be a graph obtained from a toroidal wall with a large hole with some modification (see Figs. 1 and 2 for example). Then it is not difficult to see that there are no two edge-disjoint K_5 -immersions, but we have to delete $\Omega(\sqrt{|V|})$ edges to make G have no K_5 -immersion.

As seen in Figs. 1 and 2, the obstruction for K_t -immersions has some topology. Such "topological obstructions" also arise in other examples that do not satisfy the Erdős–Pósa property:

³ This is often called a *weak immersion*. An immersion η is strong if $\eta(e)$ does not contain $\eta(v)$ when e is not incident with v.

Download English Version:

https://daneshyari.com/en/article/8903851

Download Persian Version:

https://daneshyari.com/article/8903851

Daneshyari.com