The extremal function for Petersen minors

Kevin Hendrey ${ }^{1}$, David R. Wood ${ }^{2}$
School of Mathematical Sciences, Monash University, Melbourne, Australia

A R T I C L E I N F O

Article history:

Received 23 September 2016
Available online xxxx

Keywords:

Graph minor
Extremal function
Petersen graph
Chromatic number
Vertex arboricity

A B S T R A C T

We prove that every graph with n vertices and at least $5 n-8$ edges contains the Petersen graph as a minor, and this bound is best possible. Moreover we characterise all Petersen-minorfree graphs with at least $5 n-11$ edges. It follows that every graph containing no Petersen minor is 9 -colourable and has vertex arboricity at most 5 . These results are also best possible.
© 2018 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from G by the following operations: vertex deletion, edge deletion and edge contraction. The theory of graph minors, initiated in the seminal work of Robertson and Seymour, is at the forefront of research in graph theory. A fundamental question at the intersection of graph minor theory and extremal graph theory asks, for a given graph H, what is the maximum number $\mathrm{ex}_{\mathrm{m}}(n, H)$ of edges in an n-vertex graph containing no H-minor? The function $\operatorname{ex}_{\mathrm{m}}(n, H)$ is called the extremal function for H-minors.

[^0]https://doi.org/10.1016/j.jctb.2018.02.001
0095-8956/® 2018 The Authors. Published by Elsevier Inc. All rights reserved.

Fig. 1. The Petersen graph.

The extremal function is known for several graphs, including the complete graphs K_{4} and K_{5} [49,10], K_{6} and K_{7} [30], K_{8} [19] and K_{9} [44], the bipartite graphs $K_{3,3}$ [14] and $K_{2, t}$ [6], and the octahedron $K_{2,2,2}$ [8], and the complete graph on eight vertices minus an edge K_{8}^{-}[43]. Tight bounds on the extremal function are known for general complete graphs K_{t} [12,23,24,45,46], unbalanced complete bipartite graphs $K_{s, t}$ [25-28], disjoint unions of complete graphs [47], disjoint unions of cycles [15,7], general dense graphs [32] and general sparse graphs $[4,16]$.

1.1. Petersen minors

We study the extremal function when the excluded minor is the Petersen graph (see Fig. 1), denoted by \mathcal{P}. Our primary result is the following:

Theorem 1. $\operatorname{ex}_{\mathrm{m}}(n, \mathcal{P}) \leqslant 5 n-9$, with equality if and only if $n \equiv 2(\bmod 7)$.
For $n \equiv 2(\bmod 7)$, we in fact completely characterise the extremal graphs (see Theorem 2 below).

The class of \mathcal{P}-minor-free graphs is interesting for several reasons. As an extension of the 4 -colour theorem, Tutte [48] conjectured that every bridgeless graph with no \mathcal{P}-minor has a nowhere zero 4-flow. Edwards, Robertson, Sanders, Seymour and Thomas [35,37, $36,40,11$] have announced a proof that every bridgeless cubic \mathcal{P}-minor-free graph is edge 3 -colourable, which is equivalent to Tutte's conjecture in the cubic case. Alspach, Goddyn and Zhang [3] showed that a graph has the circuit cover property if and only if it has no \mathcal{P}-minor. It is recognised that determining the structure of \mathcal{P}-minor-free graphs is a key open problem in graph minor theory (see [9,31] for example). Theorem 1 is a step in this direction.

1.2. Extremal graphs

We now present the lower bound in Theorem 1, and describe the class of extremal graphs. For a graph H and non-negative integer t, an ($H, t)$-cockade is defined as follows: H itself is an (H, t)-cockade, and any other graph G is an (H, t)-cockade if there are (H, t)-cockades G_{1} and G_{2} distinct from G such that $G_{1} \cup G_{2}=G$ and $G_{1} \cap G_{2} \cong K_{t}$. It is well known that for every $(t+1)$-connected graph H and every non-negative integer

https://daneshyari.com/en/article/8903853

Download Persian Version:

https://daneshyari.com/article/8903853

Daneshyari.com

[^0]: E-mail addresses: kevin.hendrey@monash.edu (K. Hendrey), david.wood@monash.edu (D.R. Wood).
 1 Research supported by an Australian Postgraduate Award.
 2 Research supported by the Australian Research Council.

