Circumference of 3-connected cubic graphs

Qinghai Liu ${ }^{\mathrm{a}, 1}$, Xingxing $\mathrm{Yu}^{\mathrm{b}, 2}$, Zhao Zhang ${ }^{\mathrm{c}, 3}$
${ }^{\text {a }}$ Center for Discrete Mathematics, Fuzhou University, Fuzhou, 350002, China
${ }^{\mathrm{b}}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States
${ }^{\text {c }}$ College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China

A R T I C L E I N F O

Article history:

Received 14 October 2011
Available online xxxx

Keywords:

Cycle

Circumference
Cubic graph

Abstract

The circumference of a graph is the length of its longest cycles. Jackson established a conjecture of Bondy by showing that the circumference of a 3-connected cubic graph of order n is $\Omega\left(n^{0.694}\right)$. Bilinski et al. improved this lower bound to $\Omega\left(n^{0.753}\right)$ by studying large Eulerian subgraphs in 3-edgeconnected graphs. In this paper, we further improve this lower bound to $\Omega\left(n^{0.8}\right)$. This is done by considering certain 2 -connected cubic graphs, finding cycles through two given edges, and distinguishing the cases according to whether or not these edges are adjacent.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Tait [10] conjectured in 1880 that every 3-connected cubic planar graph contains a Hamilton cycle. This conjecture remained open until a counterexample was found in

[^0]http://dx.doi.org/10.1016/j.jctb.2017.08.008 0095-8956/® 2017 Elsevier Inc. All rights reserved.

1946 by Tutte [11]. There has since been extensive research concerning longest cycles in graphs, see [6] for more references. We use $|G|$ to denote the order of a graph G, i.e., the number of vertices in G; and refer to the length of a longest cycle in G as the circumference of G. We will be concerned with lower bounds on the circumference of 3 -connected cubic graphs.

Barnette [4] showed that every 3-connected cubic graph of order n has circumference $\Omega(\log n)$. Bondy and Simonovits [7] improved this bound to $\exp (\Omega(\sqrt{\log n}))$ and conjectured that it can be improved further to $\Omega\left(n^{c}\right)$ for some constant $0<c<1$. This conjecture was confirmed by Jackson [8], with $c=\log _{2}(1+\sqrt{5})-1 \approx 0.694$. Bondy and Simonovits [7] constructed an infinite family of 3 -connected cubic graphs with circumference $\Theta\left(n^{\log _{9} 8}\right) \approx \Theta\left(n^{0.946}\right)$.

Recently, Bilinski, Jackson, Ma and Yu [6] showed that every 3-connected cubic graph of order n has circumference $\Omega\left(n^{\alpha}\right)$, where $\alpha \approx 0.753$ is the real root of $4^{1 / x}-3^{1 / x}=2$. This is proved by reducing the problem to one about Eulerian subgraphs in 3 -edgeconnected graphs.

In this paper, we further improve this lower bound by considering certain vertex weighted, 2-connected cubic graphs (multiple edges allowed). Let G be a graph and let $w: V(G) \rightarrow \mathbb{Z}^{+}$, where here \mathbb{Z}^{+}denotes the set of non-negative integers. For any $H \subseteq G$, we write $w(H):=\sum_{v \in V(H)} w(v)$.

Theorem 1.1. Let $r=0.8$ and $c=1 /\left(8^{r}-6^{r}\right) \approx 0.922$. Let G be a 2-connected cubic graph, let $w: V(G) \rightarrow \mathbb{Z}^{+}$, and let $e, f \in E(G)$. Suppose every 2-edge cut in G separates e from f. Then there is a cycle C in G with $e, f \in E(C)$ such that
(a) $w(C) \geq w(G)^{r}$ when e, f are adjacent, and
(b) $w(C) \geq c w(G)^{r}$ when e, f are not adjacent.

Remark 1.2. We may assume that the weight function w in Theorem 1.1 satisfies $w(v)=0$ for every vertex v incident with e or f.

To see this, we define a new weight function $w^{\prime}: V(G) \rightarrow \mathbb{Z}^{+}$such that $w^{\prime}(v)=0$ if v is incident with e or f, and $w^{\prime}(v)=w(v)$ otherwise. Let $w_{0}=\sum w(v)$, where the sum is over all vertices incident with e or f. Then $w(G)=w^{\prime}(G)+w_{0}$. If Theorem 1.1 holds for w^{\prime} then there is a cycle C such that $e, f \in E(C), w^{\prime}(C) \geq w^{\prime}(G)^{r}$ (when e, f are adjacent), and $w^{\prime}(C) \geq c w^{\prime}(G)^{r}$ (when e, f are not adjacent). Thus $w(C)=w^{\prime}(C)+w_{0}$, $w(C) \geq\left(w(G)-w_{0}\right)^{r}+w_{0} \geq w(G)^{r}$ (when e, f are adjacent), and $w(C) \geq c(w(G)-$ $\left.w_{0}\right)^{r}+w_{0} \geq c w(G)^{r}$ (when e, f are not adjacent). Thus, Theorem 1.1 also holds for w.

In our proof of Theorem 1.1 we divide G into a few smaller parts, find long cycles in some of these parts, and merge these cycles into the desired cycle in G. The length of the cycle will be guaranteed by various properties of the function x^{r} (see Lemma 2.4). We will need structural information of graphs obtained from a 3-connected cubic graph after certain operations, and we will also need cycles through some specified edges and

https://daneshyari.com/en/article/8903904

Download Persian Version:

https://daneshyari.com/article/8903904

Daneshyari.com

[^0]: E-mail addresses: qliu@fzu.edu.cn (Q. Liu), yu@math.gatech.edu (X. Yu), hxhzz@sina.com
 (Z. Zhang).
 ${ }^{1}$ Partially supported by NSFC Projects 11301086 and 11401103, and the Natural Science Foundation of Fujian Province under project number 2014J05004.
 ${ }^{2}$ Partially supported by NSF grants DMS-1265564 and DMS-1600738, and the Hundred Talents Program of Fujian Province.
 ${ }^{3}$ Partially supported by NSFC 11531011 and 11771013.

