Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The quasi-Rothberger property of linearly ordered spaces

Zuquan Li

Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, PR China¹

ARTICLE INFO

Article history: Received 26 June 2017 Received in revised form 8 June 2018 Accepted 20 July 2018 Available online 23 July 2018

MSC: primary 54D20 secondary 54F05

Keywords: Quasi-Lindelöf Quasi-Rothberger Extent Anti-well-ordered Linearly ordered space

1. Introduction

A.V. Arhangel'skii [1] introduced the quasi-Lindelöf property in connection with the estimation of the cardinality of topological spaces. A space X is said to be *quasi-Lindelöf* if for every closed set $F \subset X$ and each cover \mathcal{U} of F by open subsets of X, there is a countable family $\{U_n : n \in \mathbb{N}\}$ of \mathcal{U} such that $F \subset \bigcup_{n \in \mathbb{N}} U_n$. The quasi-Lindelöf property is weaker than the Lindelöf property and stronger than the weakly Lindelöf property.

Recently, G. Di Maio and Lj.D.R. Kočinac [4] defined the following quasi-Rothberger property as a selective version of the quasi-Lindelöf property:

Definition 1.1. A space X is said to be *quasi-Rothberger* if for each closed set $F \subset X$ and each sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of covers of F by sets open in X, there is a $U_n \in \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $F \subset \overline{\bigcup_{n \in \mathbb{N}} U_n}$.

Let \mathcal{A} and \mathcal{B} be collections of subsets of an infinite set X, the following selection principles are defined:

¹ Current address.

https://doi.org/10.1016/j.topol.2018.07.011 0166-8641/© 2018 Elsevier B.V. All rights reserved.

A B S T R A C T A space X is said to be quasi-Rothberger if for each closed set $F \subset X$ and each sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of covers of F by sets open in X, there is a $U_n \in \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $F \subset \bigcup_{n \in \mathbb{N}} U_n$. In this article, we give necessary and sufficient conditions of the quasi-Rothberger property of linearly ordered spaces.

© 2018 Elsevier B.V. All rights reserved.

E-mail address: hzsdlzq@sina.com.

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{b_n : n \in \mathbb{N}\}$ such that $b_n \in A_n$ for each $n \in \mathbb{N}$ and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $\mathsf{S}_{\mathsf{fin}}(\mathcal{A},\mathcal{B})$ denotes the selection principle: for each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{B_n : n \in \mathbb{N}\}$ such that B_n is a finite subset of A_n for each $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

Let \mathcal{O} denote the collection of all the open covers of X, then $S_1(\mathcal{O}, \mathcal{O})$ is called the Rothberger property and $S_{\text{fin}}(\mathcal{O}, \mathcal{O})$ is known as the Menger property [2, Table 1].

For a space X and a subset F of X, we write:

- $\mathcal{O}_F = \{\mathcal{U} : \mathcal{U} \text{ is a cover of } F \text{ by sets open in } X\};$
- $\mathcal{O}_F^D = \{\mathcal{U} : \mathcal{U} \text{ is a family of open subsets of } X \text{ such that } F \subset \overline{\bigcup \mathcal{U}} \}.$

Thus a space X is quasi-Rothberger if and only if X satisfies $S_1(\mathcal{O}_F, \mathcal{O}_F^D)$ for each closed subset F of X. Recall that a space X is said to be *weakly Lindelöf* [4] if for each open cover \mathcal{U} of X, there is a $U_n \in \mathcal{U}$ for each $n \in \mathbb{N}$ such that $X = \bigcup_{n \in \mathbb{N}} U_n$. A space X is said to be *weakly Rothberger* [3] if for each sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X, there is a $U_n \in \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $X = \bigcup_{n \in \mathbb{N}} U_n$.

We have the following implications.

Example 1.2. There exists a quasi-Lindelöf space which is not quasi-Rothberger.

Proof. Let $\beta \mathbb{N} \setminus \mathbb{N}$ be the remainder of Čech–Stone compactification of \mathbb{N} , then $\beta \mathbb{N} \setminus \mathbb{N}$ satisfies $S_{fin}(\mathcal{O}, \mathcal{O})$ since it is compact. Thus $\beta \mathbb{N} \setminus \mathbb{N}$ is Lindelöf. Moreover, $\beta \mathbb{N} \setminus \mathbb{N}$ is quasi-Lindelöf. By Lemma 2.5 in [2], $\beta \mathbb{N} \setminus \mathbb{N}$ is not weakly Rothberger. So $\beta \mathbb{N} \setminus \mathbb{N}$ is not quasi-Rothberger. \Box

Note that there are no implications between the Lindelöf property and the quasi-Rothberger property. Example 1.2 implies that there is a Lindelöf space which is not quasi-Rothberger.

Example 1.3 ([6, Example 14.8]). There exists a quasi-Rothberger space which is not Lindelöf.

Proof. Let \mathbb{R} be with usual topology τ , $X = \{x_{\alpha} : 0 \leq \alpha < \omega_1\}$ is a subset of \mathbb{R} of cardinality of ω_1 , where ω_1 denotes the first uncountable ordinal. For each $\alpha < \omega_1$, take $V_{\alpha} = \{x_{\beta} : 0 \leq \beta \leq \alpha\}$. Denote

$$\tau' = \{V \cap X : V \in \tau\} \bigcup \{V_{\alpha} : 0 \le \alpha < \omega_1\}.$$

Then τ' is a subbase for a topology of X. X is a hereditarily separable T_2 space. Therefore, X is quasi-Rothberger by [4, Proposition 2.2]. But X is not Lindelöf. \Box

There are very few papers which deal with the quasi-Rothberger. In [4] G. Di Maio and Lj.D.R. Kočinac obtained the following result:

Proposition 1.4 ([4, Proposition 2.2]). Every hereditarily separable space X is quasi-Rothberger.

On the other hand, hereditary separability is not necessary for a space being quasi-Rothberger. The following example illustrates that there exists a quasi-Rothberger space which is not even separable.

Example 1.5. There exists a quasi-Rothberger space which is not separable.

Download English Version:

https://daneshyari.com/en/article/8903917

Download Persian Version:

https://daneshyari.com/article/8903917

Daneshyari.com