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Abstract

In this paper, we prove that a ‘punctured’ closed, connected, orientable tri-
angulated manifold is simple homotopy equivalent to any of its roots. We
also emphasize that this phenomena does not hold in general. Orientability
plays a central role for this result and thus makes the result interesting. In
the course of the proof of this theorem, we prove two lemmas, which partially
answer two questions of Olivier Bernardi and Caroline Klivans.

Keywords: simplicial complex, cycle, forest, discrete morse theory,
homology
MSC code: 05C05, 05C50, 05E45, 57Q10

1. Introduction

The notion of forests and their roots in higher dimensions was introduced
by Olivier Bernardi and Caroline Klivans in [1] to obtain a generalization of
the “Matrix Forest Theorem” in higher dimension. In fact, they proved that,
for a d−dimensional simplicial complex G,

∑
(F,R)

|Hd−1(F,R)|2x|R| = det(LG + xId),

where the summation runs over all rooted forests of G and Id is the identity
matrix of dimension |Gd−1|, and LG is the Laplacian matrix. These higher
dimensional forests and roots(definitions later) are direct generalization of
the same in graphs. Now, in graph case, a forest simplicially collapses onto
any of its roots (in graph case, a root consists of a finite number of vertices,
one vertex per connected component of the graph). So it is tempting to
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