Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

A method of returning vector-valued maps to real-valued functions on monotone operators $\stackrel{\bigstar}{\Rightarrow}$

Kaori Yamazaki

Faculty of Economics, Takasaki City University of Economics, 1300 Kaminamie, Takasaki, Gunma 370-0801, Japan

ARTICLE INFO

Article history: Received 21 September 2017 Accepted 3 July 2018 Available online 9 July 2018

MSC:54C08 54D20 54E20 46A40

Keywords: Ordered topological vector space Positive interior point Minkowski functional Gauge Interior of the positive cone Monotonically countably paracompact Monotonically countably metacompact Stratifiable Semi-staratifiable Monotone cb-space Perfectly normal Monotone operator

1. Introduction

Throughout this paper, let \mathbb{R} be the set of all real numbers, and \mathbb{N} the set of all natural numbers. All topological spaces are assumed to be Hausdorff spaces.

E-mail address: kaori@tcue.ac.jp.

 $\label{eq:https://doi.org/10.1016/j.topol.2018.07.004 0166-8641/© 2018 Elsevier B.V. All rights reserved.$

ABSTRACT

Let Y be an ordered topological vector space with a positive interior point e. Motivated by the Minkowski functional p_e , we introduce the function q_e on the interior $\operatorname{int}_Y Y^+$ of the positive cone of Y. The function q_e plays a role for evaluating a 'reverse gauge' of the Minkowski functional p_e on the restricted space $\operatorname{int}_Y Y^+$. We also apply the function q_e for giving complete proof of the recent results [7] by Jin, Xie and Yue on monotonically countably paracompact spaces. New characterizations by vector-valued continuous maps are also given for stratifiable spaces and monotone cb-spaces, the latter provides a positive answer to a question posed in [12] by the author.

© 2018 Elsevier B.V. All rights reserved.

^{*} This work was supported by TCUE Special Grant-in-Aid (A) 2017.

For two sequences $(A_n)_{n\in\mathbb{N}}$ and $(B_n)_{n\in\mathbb{N}}$ of subsets of a space, it is written that $(A_n) \preccurlyeq (B_n)$ if $A_n \subset B_n$ for each $n \in \mathbb{N}$. A topological space X is said to be monotonically countably metacompact ([6]) if there exists an operator U assigning to each decreasing sequence $(D_j)_{j\in\mathbb{N}}$ of closed subsets of X with $\bigcap_{j\in\mathbb{N}} D_j = \emptyset$, a sequence $U((D_j)) = (U(n, (D_j)))_{n\in\mathbb{N}}$ of open subsets of X such that (1) $D_n \subset U(n, (D_j))$ for each $n \in \mathbb{N}$; (2) $\bigcap_{n\in\mathbb{N}} U(n, (D_j)) = \emptyset$; (3) If $(D_j) \preccurlyeq (E_j)$, then $U((D_j)) \preccurlyeq U((E_j))$. If, in addition, (2') $\bigcap_{n\in\mathbb{N}} \overline{U(n, (D_j))} = \emptyset$ holds, X is said to be monotonically countably paracompact ([6]).

The following theorem was obtained by C. Good, R. Knight and I. Stares [6, Theorem 25], C. Good and L. Haynes [5, Theorem 3] and the author [11, Corollary 3.3]. The symbol $(0, \infty)$ stands for the set $\{r \in \mathbb{R} : r > 0\}$.

Theorem 1.1 ([6], [5], [11]). For a topological space X, the following statements (a), (b), (c) and (d) are mutually equivalent to X being monotonically countably paracompact.

- (a) There exists an operator Φ assigning to each locally upper-bounded function $f : X \to \mathbb{R}$, a locally upper-bounded l.s.c. function $\Phi(f) : X \to \mathbb{R}$ with $f \leq \Phi(f)$ such that $\Phi(f) \leq \Phi(f')$ whenever $f \leq f'$.
- (b) There exist operators Φ and Ψ assigning to each u.s.c. function $f: X \to \mathbb{R}$, an l.s.c. function $\Phi(f): X \to \mathbb{R}$ and a u.s.c. function $\Psi(f): X \to \mathbb{R}$ with $f \leq \Phi(f) \leq \Psi(f)$ such that $\Phi(f) \leq \Phi(f')$ and $\Psi(f) \leq \Psi(f')$ whenever $f \leq f'$.
- (c) There exist operators Φ and Ψ assigning to each l.s.c. function $f : X \to (0, \infty)$, a u.s.c. function $\Phi(f) : X \to (0, \infty)$ and an l.s.c. function $\Psi(f) : X \to (0, \infty)$ with $\Psi(f) \leq \Phi(f) \leq f$ such that $\Phi(f) \leq \Phi(f')$ and $\Psi(f) \leq \Psi(f')$ whenever $f \leq f'$.
- (d) There exists an operator Φ assigning to each locally bounded function $f: X \to \mathbb{R}$, a locally bounded l.s.c. function $\Phi(f): X \to \mathbb{R}$ with $|f| \le \Phi(f)$ such that $\Phi(f) \le \Phi(f')$ whenever $|f| \le |f'|$.

The author [12] generalized 'real-valued functions' of these equivalence of Theorem 1.1 except (c), into 'maps to ordered topological vector spaces with positive interior points'. To introduce this, let us first recall some terminology.

A partially ordered real vector space (Y, \leq) is said to be an *ordered vector space* if the following conditions are satisfied: (i) $x \leq y$ implies $x + z \leq y + z$ for all $x, y, z \in Y$, (ii) $x \leq y$ implies $rx \leq ry$ for all $x, y \in Y$ and all $r \in \mathbb{R}$ with $r \geq 0$. The symbol y < y' is used when $y \leq y'$ and $y \neq y'$.

Let (Y, \leq) be an ordered vector space. Then, $y \in Y$ is positive if $\mathbf{0} \leq y$, and the set $\{y \in Y : \mathbf{0} \leq y\}$, called the positive cone of Y, is denoted by Y^+ . For $y_1, y_2 \in Y$ with $y_1 \leq y_2$, the subspace $(y_1 + Y^+) \cap (y_2 - Y^+)$ of Y, called an order interval, is denoted by $[y_1, y_2]$. A topological vector space Y is called an ordered topological vector space (o.t.v.s., for short) if Y is an ordered vector space such that the positive cone Y^+ is closed in Y. It is known that e is an interior point of Y^+ (i.e. $e \in \operatorname{int}_Y Y^+$) if and only if [-e, e] is a **0**-neighborhood ([1, Lemma 2.5]). An interior point e of Y^+ is a positive interior point of Y if e > 0. Note that an o.t.v.s. Y is non-trivial if and only if $\operatorname{int}_Y Y^+ \subset Y^+ \setminus \{0\}$, and that every o.t.v.s. with positive interior points is non-trivial. A point $x \in Y^+$ is called an order unit if each $y \in Y$ admits $\lambda > 0$ such that $y \leq \lambda x$. The positive cone Y^+ is normal if each **0**-neighborhood U admits a **0**-neighborhood V such that $(V + Y^+) \cap (V - Y^+) \subset U$.

Let $f: X \to Y$ be a map from a topological space X into an o.t.v.s. Y. Then, f is said to be *lower* semi-continuous, *l.s.c.* for short, (resp. upper semi-continuous, *u.s.c.* for short), if for each $x \in X$ and each **0**-neighborhood V, there exists a neighborhood O_x of x such that $f(O_x) \subset f(x) + V + Y^+$ (resp. $f(O_x) \subset f(x) + V - Y^+$) ([3], [12]). Every continuous map $f: X \to Y$ from a topological space X into an o.t.v.s. Y is l.s.c. and u.s.c., and the converse holds if Y^+ is normal.

A subset A of an o.t.v.s. Y is called *upper-bounded* [12] if for each **0**-neighborhood V, there exists $n \in \mathbb{N}$ such that $A \subset nV - Y^+$. If Y has a positive interior point e, A is upper-bounded if and only if $A \subset re - Y^+$ for some r > 0. A map $f : X \to Y$ from a topological space X into an o.t.v.s. Y is said to be *locally*

Download English Version:

https://daneshyari.com/en/article/8903941

Download Persian Version:

https://daneshyari.com/article/8903941

Daneshyari.com