

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Metrizability of the space of quasicontinuous functions

Ľubica Holá^a, Dušan Holý^{b,*}

- Academy of Sciences, Institute of Mathematics, Štefánikova 49, 81 473 Bratislava, Slovakia
 Department of Mathematics and Computer Science, Faculty of Education, Trnava University, Priemyselná 4, 91 843 Trnava, Slovakia
- ARTICLE INFO

Article history: Received 25 June 2018 Accepted 3 July 2018 Available online 4 July 2018

MSC: primary 54C35, 54B20, 54C08

Keywords: Quasicontinuous function Metrizability First countability Compactness Sequential compactness

ABSTRACT

Let X be a topological space, (Y,d) be a metric space, Q(X,Y) be the space of quasicontinuous functions from X to Y and τ_{UC} be the topology of uniform convergence on compacta. We study first countability, metrizability and complete metrizability of $(Q(X,Y),\tau_{UC})$. We will apply our results to characterize sequentially compact subsets of $(Q(X,Y),\tau_{UC})$.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Quasicontinuous functions were introduced by Kempisty in 1932 in [15]. They were studied in many papers, see for example [2], [16], [21] and others. Quasicontinuous functions are important in many areas of mathematics. They found applications in the study of minimal usco and minimal cusco maps [8,10], in the study of topological groups [3,18,20], in proofs of some generalizations of Michael's selection theorem [6], in the study of extensions of densely defined continuous functions [7], in the study of dynamical systems [4]. The quasicontinuity is also used in the study of CHART groups [19].

2. Preliminaries

In what follows let X, Y be Hausdorff topological spaces, \mathbb{N} be the set of positive natural numbers, \mathbb{R} be the space of real numbers with the usual metric. The symbol \overline{A} will stand for the closure of the set A in a topological space.

E-mail addresses: hola@mat.savba.sk (L. Holá), dusan.holy@truni.sk (D. Holý).

^{*} Corresponding author.

A function $f: X \to Y$ is quasicontinuous [21] at $x \in X$ if for every open set $V \subset Y$, $f(x) \in V$ and every open set $U \subset X$, $x \in U$ there is a nonempty open set $W \subset U$ such that $f(W) \subset V$. If f is quasicontinuous at every point of X, we say that f is quasicontinuous.

We say that a subset of X is quasi-open (or semi-open) [21] if it is contained in the closure of its interior. Then a function $f: X \to Y$ is quasicontinuous if and only if $f^{-1}(V)$ is quasi-open for every open set $V \subset Y$.

Denote by F(X,Y) the set of all functions from X to Y and by Q(X,Y) the set of all quasicontinuous functions in F(X,Y).

By $\mathfrak{K}(X)$ we mean the family of all nonempty compact subsets of X.

Let (Y, d) be a nontrivial metric space.

The topology of uniform convergence on compact sets on F(X,Y) we denote by τ_{UC} . This topology is induced by the uniformity \mathfrak{U}_{UC} which has a base consisting of sets of the form

$$W(K,\varepsilon) = \{(f,g): \forall x \in K \ d(f(x),g(x)) < \varepsilon\},\$$

where $K \in \mathfrak{K}(X)$ and $\varepsilon > 0$. The general τ_{UC} -basic neighbourhood of $f \in F(X,Y)$ will be denoted by $W(f,K,\varepsilon)$, i.e. $W(f,K,\varepsilon) = W(K,\varepsilon)[f]$.

3. Metrizability

A topological space X is hemicompact [5] if in the family of all compact subspaces of X ordered by the inclusion there exists a countable cofinal subfamily.

Every hemicompact space is σ -compact, but not vice versa. The space of rationals with the usual topology is a σ -compact space which is not hemicompact. A locally compact σ -compact space is hemicompact.

Theorem 3.1. Let X be a topological space and (Y, d) be a metric space. Then the following are equivalent:

- (1) The uniformity \mathfrak{U}_{UC} on Q(X,Y) is induced by a metric;
- (2) $(Q(X,Y), \tau_{UC})$ is metrizable;
- (3) $(Q(X,Y), \tau_{UC})$ is first countable;
- (4) X is hemicompact.

Proof. (4) \Rightarrow (1) Let $\{K_n : n \in \mathbb{N}\}$ be a countable cofinal subfamily in $\mathfrak{K}(X)$ with respect to the inclusion. The family

$$W(K,\varepsilon) = \{(f,g): \ \forall \ x \in K \ d(f(x),g(x)) < \varepsilon\}$$

where $K \in \mathfrak{K}(X)$ and $\varepsilon > 0$, is a base of \mathfrak{U}_{UC} on Q(X,Y). Since for every $K \in \mathfrak{K}(X)$ there is $n \in \mathbb{N}$ with $K \subset K_n$, the family

$$\{W(K_n, \frac{1}{m}): n, m \in \mathbb{N}\}$$

is a countable base of \mathfrak{U}_{UC} . Thus by the metrization theorem in [14] $(Q(X,Y),\mathfrak{U}_{UC})$ is metrizable.

- $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious.
- $(3) \Rightarrow (4)$ Let $y_0 \in Y$ and let f be the constant function on X mapping each point to y_0 . By the assumption f has a countable base $\{W(f, K_n, \varepsilon_n) : n \in \mathbb{N}\}$. We claim that $\{K_n : n \in \mathbb{N}\}$ is a countable cofinal family in $\mathfrak{K}(X)$ with respect to the inclusion. Suppose that this is not true. Thus there is $K \in \mathfrak{K}(X)$ such that for each $K \in \mathbb{N}$ there is $K \in \mathfrak{K} \setminus K_n$. For every $K \in \mathbb{N}$ there is an open neighbourhood $K \in \mathbb{N}$

Download English Version:

https://daneshyari.com/en/article/8903945

Download Persian Version:

https://daneshyari.com/article/8903945

<u>Daneshyari.com</u>