Topology and its Applications ••• (••••) •••-•••

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On the irreducibility of the space of Galois covers of curves of a given numerical type for certain split metacyclic groups $\stackrel{\Rightarrow}{\approx}$

Sascha Weigl

University of Bayreuth, Universitätssttrasse 30, 95444 Bayreuth, Germany

ARTICLE INFO

Article history: Received 10 August 2017 Received in revised form 22 June 2018 Accepted 22 June 2018 Available online xxxx

MSC: 14H10 20F36 57M12

Keywords: Moduli spaces of curves Branched coverings of Riemann surfaces Hurwitz equivalence Braid groups Monodromy

1. Introduction

The singular locus of \mathfrak{M}_q (the coarse moduli space of curves of genus $q \geq 2$) consists of the loci $\mathfrak{M}_q(G)$ of the curves which admit an effective action by a finite group G. A good approach to understanding the irreducible components of $\mathfrak{M}_g(G)$ for a given finite group G is to view \mathfrak{M}_g as the quotient of the Teichmüller space \mathcal{T}_g by the natural action of the mapping class group Map_q :

$$\pi: \mathcal{T}_g \to \mathcal{T}_g / Map_g = \mathfrak{M}_g$$

We have

$$\mathfrak{M}_g(G) = \bigcup_{[\rho]} \mathfrak{M}_{g,\rho}(G),$$

https://doi.org/10.1016/j.topol.2018.06.011

Please cite this article in press as: S. Weigl, On the irreducibility of the space of Galois covers of curves of a given numerical type for certain split metacyclic groups, Topol. Appl. (2018), https://doi.org/10.1016/j.topol.2018.06.011

ABSTRACT

We consider the spaces $\mathfrak{M}_q(G) \subset \mathfrak{M}_q$ of curves of genus $q \geq 2$, that admit an effective action by a given finite group G and want to understand its irreducible components. We prove that if $G = C_m \rtimes C_n$ is a split metacyclic group where both factors have odd prime order, the irreducible components are determined by a numerical datum which comes from the monodromy of the induced G-coverings. © 2018 Elsevier B.V. All rights reserved.

TOPOL:6493

The present work partially took place in the framework of the ERC Advanced grant n. 340258, 'TADMICAMT'. E-mail address: sascha.weigl@googlemail.com.

^{0166-8641/© 2018} Elsevier B.V. All rights reserved.

$\mathbf{2}$

ARTICLE IN PRESS

S. Weigl / Topology and its Applications ••• (••••) •••-•••

where $\rho: G \hookrightarrow Map_g$ is an injective homomorphism, $\mathfrak{M}_{g,\rho}(G)$ is the image of the fixed locus of $\rho(G)$ under the natural projection π and $\rho \sim \rho'$ iff they are equivalent by the equivalence relation generated by the automorphisms of G and the conjugations by Map_g . We call this equivalence class a topological type (cf. [4], section 2). Each $\mathfrak{M}_{g,\rho}(G)$ is an irreducible (Zariski) closed subset of \mathfrak{M}_g , as proven by Catanese (cf. [4], Theorem 2.3). Primary invariants are given by the induced branched coverings $C \to C/G =: C'$, namely the genus g' = g(C'), the number d of branching points, and the branching orders $m_1, ..., m_d$. Every topological type moreover determines a finer numerical invariant, called the *numerical type*, given by the monodromy of the induced coverings (cf. Definition 2.2). We want to understand whether this invariant in turn determines the topological type.

Leading Question. Does every numerical type determine a topological type?

We prove that this holds true for split metacyclic groups with prime factors, obtaining the following result by the irreducibility of the spaces $\mathfrak{M}_{g,\rho}(G)$:

Theorem. Let $G = C_m \rtimes C_n$ be a split metacyclic group, where m > 3, n > 2 are prime numbers. Then for every numerical type ν , the spaces $\mathfrak{M}_{q,\nu}(G)$ are irreducible.

Similar results have been proven by Nielsen, Catanese and Catanese, Lönne, Perroni for cyclic groups resp. dihedral groups (cf. [9], [2] and [3], [4]). In particular, in [3], the authors proved the same result for G a dihedral group and g' = 0, whereas in [4] they showed that for G dihedral and g' > 0 the numerical type is not sufficient to distinguish the topological types, whence they introduced a new homological invariant, which turns out to be sufficient.

The practical approach in our case is as follows. By Riemann's Existence Theorem, the spaces $\mathfrak{M}_{g,\rho}(G)$ correspond to orbits of the combined action of the mapping class group and the automorphism group of G on Hurwitz vectors. Recall that a G-Hurwitz vector is a vector

$$V = (g_1, \dots, g_d; a_1, b_1; \dots; a_{q'}, b_{q'}) \in G^{d+2g'},$$

such that $g_i \neq 1$ for $i = 1, ..., d, \langle V \rangle = G$ and $\prod_{i=1}^d g_i \prod_{j=1}^{g'} [a_j, b_j] = 1$.

For fixed d, g', we denote by $H_{g',d}(G)$ the set of *G*-Hurwitz vectors with branching part $g_1, ..., g_d$ of length d and genus part $a_1, b_1, ..., a_{g'}, b_{g'}$ of length 2g'. The goal is to prove transitivity of the action on the subset $H_{g',d,\nu}(G)$ of Hurwitz vectors of a given numerical type ν .

Accordingly, a reformulation of our theorem, and what we are practically going to show, is: for any given numerical type, the combined action of the mapping class group and the automorphism group of G is transitive on the set of Hurwitz vectors of a given numerical type.

The structure of the paper is as follows:

In section 2 we describe the action on Hurwitz vectors and introduce the notion of numerical type. See [11] for more details.

In section 3 we present several basic results on split metacyclic groups.

Section 4 will be as follows: First we treat the case g' = 0. We start by considering triples of consecutive elements, where by restriction we have an action of Br_3 . We prove that there is a subgroup $H < Br_3$ which admits a linear representation $\hat{\rho} : H \to GL(3, m)$ from which we can recover the action of H on the triple. In a suitably general situation we can restrict it to a two-dimensional representation $\rho : H \to GL(2, m)$ (cf. Proposition 4.1). We show that the image of this representation ρ contains the special linear group SL(2, m)(cf. Proposition 4.7).

In section 5 we use that SL(2, m) acts transitively on non-zero vectors in \mathbb{F}_m^2 to establish normal forms for triples. Using these normal forms, we obtain normal forms for quadruples which we can eventually use

Please cite this article in press as: S. Weigl, On the irreducibility of the space of Galois covers of curves of a given numerical type for certain split metacyclic groups, Topol. Appl. (2018), https://doi.org/10.1016/j.topol.2018.06.011

Download English Version:

https://daneshyari.com/en/article/8903954

Download Persian Version:

https://daneshyari.com/article/8903954

Daneshyari.com