Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Asymmetric norms given by symmetrisation and specialisation order $\stackrel{\bigstar}{\sim}$

Jurie Conradie*, Hans-Peter A. Künzi

Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa

ARTICLE INFO

Article history: Received 22 January 2018 Accepted 16 April 2018 Available online 18 April 2018

 $\begin{array}{c} MSC: \\ 06A15 \\ 46M10 \\ 46B40 \\ 54E35 \\ 54F05 \end{array}$

 $\label{eq:constraint} \begin{array}{l} Keywords: \\ T_0\mbox{-}quasi-metric \\ Asymmetric norm \\ Injective \\ Specialisation order \\ Galois connection \\ Maximal quasi-metric \\ Producing quasi-metric \end{array}$

ABSTRACT

In this paper we continue the investigations of the relationship between T_0 -quasimetric spaces and partially ordered metric spaces. Among other things, we establish an equivalence of categories between so-called maximal T_0 -quasi-metric spaces and partially ordered metric spaces produced by T_0 -quasi-metrics. In the linear context we give geometric interpretations of the obtained results. In particular, we also derive a representation theorem for injective asymmetrically normed spaces.

© 2018 Elsevier B.V. All rights reserved.

With every T_0 -quasi-metric d on a set X we can associate a metric (its symmetrisation d^s) and a partial order (the specialisation order \leq_d induced by d). In this way every T_0 -quasi-metric space produces a partially ordered metric space (X, d^s, \leq_d) . It is natural to ask when the converse will be true, that is, given a partially ordered metric space (X, m, \leq) , when will there be a T_0 -quasi-metric d that produces (X, m, \leq_d) in the sense that $m = d^s$ and the partial orders \leq and \leq_d on X coincide? This question was investigated in detail in [7] and [8], where it was shown that in the presence of additional algebraic structure on X a satisfactory characterisation is possible, and that order-convexity plays an important role in this regard.

* Corresponding author.

https://doi.org/10.1016/j.topol.2018.04.009 0166-8641/© 2018 Elsevier B.V. All rights reserved.

 $^{^{*}}$ The authors would like to thank the South African National Research Foundation for partial financial support (grant Nos. CPR20110610000019344 and IFR1202200082).

E-mail addresses: jurie.conradie@uct.ac.za (J. Conradie), hans-peter.kunzi@uct.ac.za (H.-P.A. Künzi).

In this paper we continue the investigation of the relationship between T_0 -quasi-metric spaces and partially ordered metric spaces. We show that it is possible to set up a Galois connection between these two classes of spaces. The notions of a maximal T_0 -quasi-metric space and a produced partially ordered metric space come up naturally when considering the closure and kernel operators associated with this connection, and restricted to these spaces the Galois connection becomes a one-to-one correspondence. We further show that there is a close relationship between non-expansive maps between T_0 -quasi-metric spaces and non-expansive and increasing maps between partially ordered metric spaces. This allows us to set up a functorial relationship between appropriate categories which becomes an equivalence of categories when we restrict to maximal T_0 -quasi-metric spaces and produced partially ordered metric spaces.

We look at the linear context, where the underlying space X is a real vector space, in some detail. Here the T_0 -quasi-metric is induced by an asymmetric norm, and the metric and partial order of the partially ordered metric space is induced by a norm and a cone respectively. The Galois connection can be re-interpreted as a connection between appropriate subsets of X, and this enables us to give a more geometric interpretation of earlier results in this context.

In the final section we show that the equivalence of categories established earlier allows us to make use of a known representation theorem for injective partially ordered normed spaces to derive a representation for injective asymmetrically normed spaces, thus answering a question left open in [5].

1. Preliminaries

A quasi-pseudo-metric on a set X is a function $d : X \times X \to [0, \infty)$ such that d(x, x) = 0 for all $x \in X$ and $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in X$. If, in addition, d(x, y) = 0 = d(y, x) implies x = y, d is a T₀-quasi-metric; if also d(x, y) = d(y, x) for all $x, y \in X$, d is a metric. The symmetrisation of the T₀-quasi-metric d is the metric d^s defined, for $x, y \in X$, by $d^s(x, y) = \max\{d(x, y), d(y, x)\}$. For a quasi-pseudo-metric d the associated specialisation pre-order on X is defined by $x \leq_d y$ if and only if d(x, y) = 0. If d is a T₀-quasi-metric, \leq_d is a partial order.

A function $p: X \to [0, \infty)$ on a real vector space X will be called an *asymmetric seminorm* on X if for all $x, y \in X$ and $\lambda \in [0, \infty)$, $p(\lambda x) = \lambda p(x)$ and $p(x + y) \leq p(x) + p(y)$. If p(x) = p(-x) = 0 implies x = 0, p will be called an *asymmetric norm*.

If p is an asymmetric norm on X, the function $p^t : X \to [0, \infty)$ defined by $p^t(x) = p(-x)$ for $x \in X$ is also an asymmetric norm, the asymmetric norm conjugate to p.

The symmetrisation of the asymmetric norm p is the function $p^s: X \to [0, \infty)$ given by

$$p^{s}(x) = \max\{p(x), p(-x)\}, \quad x \in X$$

and this is easily seen to be a norm on X.

An asymmetric norm p induces a T_0 -quasi-metric d_p on X defined by $d_p(x, y) = p(x - y)$ for all $x, y \in X$. The associated partial order is defined by $x \leq_p y$ if and only if p(x - y) = 0.

A non-empty subset A of the real vector space X is *absorbent* if for every $x \in X$, there is a $\lambda > 0$ such that $x \in \lambda A$, and *balanced* if $\lambda x \in A$ for every $x \in A$ and for all $|\lambda| \leq 1$. A set that is both convex and balanced is called *absolutely convex*. It is clear that every absorbent set contains 0. If A is a convex set containing 0, then $0 < \lambda \leq \mu$ implies $\lambda A \subseteq \mu A$. If A is both convex and absorbent (but not necessarily balanced), then for every $x \in X$, there is a $\lambda > 0$ such that $x \in \mu A$ for every $\mu \geq \lambda$.

If A is an absorbent set in X, the gauge p_A of A is defined by

$$p_A(x) = \inf\{\lambda > 0 : x \in \lambda A\}, \quad x \in X.$$

Download English Version:

https://daneshyari.com/en/article/8903980

Download Persian Version:

https://daneshyari.com/article/8903980

Daneshyari.com