Genera of two-bridge knots and epimorphisms of their knot groups

Masaaki Suzuki ${ }^{\text {a,* }}$, Anh T. Tran ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Frontier Media Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan
b Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA

A R T I C L E I N F O

Article history:

Received 12 July 2017
Received in revised form 20 April 2018
Accepted 20 April 2018
Available online 30 April 2018

$M S C$:

57M25
57M27
Keywords:
Knot group
Epimorphism
Two-bridge knot
Genus

Abstract

Let K, K^{\prime} be two-bridge knots of genus k, k^{\prime} respectively. We show the necessary and sufficient condition of k in terms of k^{\prime} that there exists an epimorphism from the knot group of K onto that of K^{\prime}.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let K be a knot in S^{3} and $G(K)$ the knot group, that is, the fundamental group of the complement of K in S^{3}. We denote by $g(K)$ the genus of K. Recently, many papers have investigated epimorphisms between knot groups. In particular, Simon's conjecture in [10], which states that every knot group maps onto at most finitely many knot groups, was settled affirmatively in [2]. In the same Kirby's problem list [10], Simon also proposed another conjecture. Namely, if there exists an epimorphism from $G(K)$ onto $G\left(K^{\prime}\right)$, then is $g(K)$ greater than or equal to $g\left(K^{\prime}\right)$? This problem is also mentioned in [11]. It is known that if there exists an epimorphism from $G(K)$ onto $G\left(K^{\prime}\right)$, then the Alexander polynomial of K is divisible by that of K^{\prime}. Moreover, Crowell [8] showed that the genus of an alternating knot is equal to a half of the degree of the Alexander polynomial. Then the above conjecture is true for alternating knots, especially two-bridge knots.

[^0]In this paper, we give a more explicit condition on genera of two-bridge knots K and K^{\prime} such that there exists an epimorphism between their knot groups. As a corollary, we show that if there exists an epimorphism from $G(K)$ onto $G\left(K^{\prime}\right)$, where K is a two-bridge knot, then $g(K) \geq 3 g\left(K^{\prime}\right)-1$.

A knot is called minimal if its knot group admits epimorphisms onto the knot groups of only the trivial knot and itself. Many types of minimal knots have already been shown in [5], [12], [14], [16], [17], [18], and [20]. By using the main theorem of this paper, we obtain several types of minimal knots. For example, a two-bridge knot of genus 2 is minimal if and only if it is not the two-bridge knot $C[2 a, 4 b, 4 a, 2 b]$ in Conway's notation for any non-zero integers a, b.

2. The Ohtsuki-Riley-Sakuma construction

In this section, we review some known facts about two-bridge knots, see [6] and [15] for example. Especially, we recall the Ohtsuki-Riley-Sakuma construction of epimorphisms between two-bridge knot groups.

It is known that a two-bridge knot corresponds to a rational number. Then $K(r)$ stands for the two-bridge knot corresponding to a rational number r. Furthermore, a rational number r can be expressed as a continued fraction

$$
r=\left[a_{1}, a_{2}, \ldots, a_{m-1}, a_{m}\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot \frac{1}{a_{m-1}+\frac{1}{a_{m}}}}}},
$$

and $a_{1}>0$. We define the length of the continued fraction to be

$$
\ell\left(\left[a_{1}, a_{2}, \ldots, a_{m-1}, a_{m}\right]\right)=m .
$$

Note that the length depends on the choice of continued fractions. For example, we can delete zeros in a continued fraction by using

$$
\begin{aligned}
& {\left[a_{1}, a_{2}, \ldots, a_{i-2}, a_{i-1}, 0, a_{i+1}, a_{i+2}, \ldots, a_{m}\right] } \\
= & {\left[a_{1}, a_{2}, \ldots, a_{i-2}, a_{i-1}+a_{i+1}, a_{i+2}, \ldots, a_{m}\right] . }
\end{aligned}
$$

Then, we can reduce the length by 2 , if the continued fraction contains a 0 .
Theorem 2.1 (Ohtsuki-Riley-Sakuma [19], Agol [1], Aimi-Lee-Sakuma [3]). Let $K(r), K(\tilde{r})$ be two-bridge knots, where $r=\left[a_{1}, a_{2}, \ldots, a_{m}\right]$. There exists an epimorphism $\varphi: G(K(\tilde{r})) \rightarrow G(K(r))$ if and only if \tilde{r} can be written as

$$
\tilde{r}=\left[\varepsilon_{1} \mathbf{a}, 2 c_{1}, \varepsilon_{2} \mathbf{a}^{-1}, 2 c_{2}, \varepsilon_{3} \mathbf{a}, 2 c_{3}, \varepsilon_{4} \mathbf{a}^{-1}, 2 c_{4}, \ldots, \varepsilon_{2 n} \mathbf{a}^{-1}, 2 c_{2 n}, \varepsilon_{2 n+1} \mathbf{a}\right],
$$

where $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right), \mathbf{a}^{-1}=\left(a_{m}, a_{m-1}, \ldots, a_{1}\right), \varepsilon_{i}= \pm 1\left(\varepsilon_{1}=1\right), c_{i} \in \mathbb{Z}$, and $n \in \mathbb{N}$.
Remark 2.2. We can exclude the case where $c_{i}=0$ and $\varepsilon_{i} \cdot \varepsilon_{i+1}=-1$ without loss of generality, since we can reduce the length of \tilde{r} in this case (see [20, Remark after Theorem 3.1] for details).

Remark 2.3. The "if" part of Theorem 2.1 is given by Theorem 1.1 of [19]. Conversely, the statement for "only if" part is shown by a similar argument to Proof of Theorem 1.4 of [13]. Lee and Sakuma considered only genus-one two-bridge knots in Theorem 1.4 in [13]. In order to generalize this argument, we need

https://daneshyari.com/en/article/8903986

Download Persian Version:

https://daneshyari.com/article/8903986

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: macky@fms.meiji.ac.jp (M. Suzuki), att140830@utdallas.edu (A.T. Tran).

