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We investigate several boundedness properties of function spaces considered as 
uniform spaces.
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1. Introduction

We begin with some basic information about uniform and function spaces. Our topological notation and 
terminology are standard (see [5]). By N and R we denote the set of natural and real numbers, respectively.

1.1. Uniform spaces

Let X be a nonempty set. A family U of subsets of X ×X satisfying the conditions

(U1) each U ∈ U contains the diagonal ΔX = {(x, x) : x ∈ X} of X;
(U2) if U, V ∈ U, then U ∩ V ∈ U;
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(U3) if U ∈ U and V ⊃ U , then V ∈ U;
(U4) for each U ∈ U there is V ∈ U with V ◦ V := {(x, y) ∈ X ×X : ∃z ∈ V such that (x, z) ∈ V, (z, y) ∈

V } ⊂ U ;
(U5) for each U ∈ U, U−1 := {(x, y) ∈ X ×X : (y, x) ∈ U} ∈ U

is called a uniformity on X.
Elements of the uniformity U are called entourages. For any entourage U ∈ U, a point x ∈ X and a 

subset A of X one defines the set

U [x] := {y ∈ X : (x, y) ∈ U}

called the U -ball with the center x, and the set

U [A] :=
⋃
a∈A

U [a]

called the U -neighborhood of A.
In [11], several boundedness properties of uniform spaces were introduced and studied. We recall the 

definitions of those properties.

Definition 1.1. A uniform space (X, U) is called:

(1) totally bounded (resp. ω-bounded) if for each U ∈ U there is a finite (resp. countable) set A ⊂ X such 
that X = U [A]. X is σ-totally bounded if it is a union of countably many totally bounded subspaces;

(2) Menger bounded (or M-bounded for short) if for each sequence (Un : n ∈ N) of entourages there is 
a sequence (Fn : n ∈ N) of finite subsets of X such that X =

⋃
n∈N

Un[Fn] [11,12];
(3) Hurewicz bounded (or H-bounded for short) if for each sequence (Un : n ∈ N) of entourages there is 

a sequence (Fn : n ∈ N) of finite subsets of X such that each x ∈ X belongs to all but finitely many 
Un[Fn] [11,12];

(4) Rothberger bounded (or R-bounded for short) if for each sequence (Un : n ∈ N) of entourages there is 
a sequence (xn : n ∈ N) of elements of X such that X =

⋃
n∈N

Un[xn] [11,12].

To each of the above boundedness properties one can correspond a game on (X, U). For example, the 
game corresponded to M-boundedness is the following. Players ONE and TWO play a round for each n ∈ N. 
In the n-th round ONE chooses an element Un ∈ U, and TWO responds by choosing a finite set An ⊂ X. 
TWO wins a play

U1, A1;U2, A2; · · · ;Un, An; · · ·

if X =
⋃

n∈N
Un[An]; otherwise ONE wins.

A uniform space (X, U) is said to be strictly M-bounded if TWO has a winning strategy in the above 
game ([11,12]).

In a similar way we define the games associated to H-boundedness and R-boundedness, and strictly 
H-bounded and strictly R-bounded uniform space.

1.2. Function spaces

Let X be a Tychonoff space, (Y, d) be a metric space and C(X, Y ) be the set of continuous functions 
from X to Y . In case Y = R we write C(X) instead of C(X, R). If y ∈ (Y, d) and λ > 0, we put S(y, λ) =
{z ∈ Y : d(y, z) < λ} and B(y, λ) = {z ∈ Y : d(y, z) ≤ λ}.
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