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1. Introduction

We begin with some basic information about uniform and function spaces. Our topological notation and
terminology are standard (see [5]). By N and R we denote the set of natural and real numbers, respectively.

1.1. Uniform spaces

Let X be a nonempty set. A family U of subsets of X x X satisfying the conditions

(U1) each U € U contains the diagonal Ay = {(z,z) : z € X} of X;
(U2) if U,V €U, then UNV € U;
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(U3) if U € Uand V S U, then V € Uj

(U4) for each U € U there is V € U with VoV := {(z,y) € X x X : 3z € V such that (z,2) € V,(z,y) €
V}icU;

(U5) foreach U € U, Ut :={(z,y) e X x X : (y,z) €U} €U

is called a uniformity on X.
Elements of the uniformity U are called entourages. For any entourage U € U, a point x € X and a
subset A of X one defines the set

Ulz] ={y € X : (z,y9) e U}
called the U-ball with the center x, and the set

UlA] = U Ulal
acA
called the U-neighborhood of A.
In [11], several boundedness properties of uniform spaces were introduced and studied. We recall the
definitions of those properties.

Definition 1.1. A uniform space (X, U) is called:

(1) totally bounded (resp. w-bounded) if for each U € U there is a finite (resp. countable) set A C X such
that X = U[A]. X is o-totally bounded if it is a union of countably many totally bounded subspaces;

(2) Menger bounded (or M-bounded for short) if for each sequence (U, : n € N) of entourages there is
a sequence (F, : n € N) of finite subsets of X such that X = {J, o Un[Fy] [11,12];

(3) Hurewicz bounded (or H-bounded for short) if for each sequence (U, : n € N) of entourages there is
a sequence (F, : n € N) of finite subsets of X such that each x € X belongs to all but finitely many
UnlFy] [11,12];

(4) Rothberger bounded (or R-bounded for short) if for each sequence (U, : n € N) of entourages there is
a sequence (z,, : n € N) of elements of X such that X = (J,, .y Un|zn] [11,12].

To each of the above boundedness properties one can correspond a game on (X, U). For example, the
game corresponded to M-boundedness is the following. Players ONE and TWO play a round for each n € N.
In the n-th round ONE chooses an element U,, € U, and TWO responds by choosing a finite set A,, C X.
TWO wins a play

U17A1;U27A2;"' 7Un7An7

if X = J,,eny Un[An]; otherwise ONE wins.

A uniform space (X,U) is said to be strictly M-bounded if TWO has a winning strategy in the above
game ([11,12]).

In a similar way we define the games associated to H-boundedness and R-boundedness, and strictly
H-bounded and strictly R-bounded uniform space.

1.2. Function spaces
Let X be a Tychonoff space, (Y,d) be a metric space and C(X,Y’) be the set of continuous functions

from X to Y. In case Y = R we write C'(X) instead of C(X,R). If y € (Y,d) and A > 0, we put S(y,\) =
{z€Y :d(y,z) <A} and B(y,\) ={z €Y :d(y,z) < \}.



Download English Version:

https://daneshyari.com/en/article/8903998

Download Persian Version:

https://daneshyari.com/article/8903998

Daneshyari.com


https://daneshyari.com/en/article/8903998
https://daneshyari.com/article/8903998
https://daneshyari.com

