ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Uniform boundedness in function spaces

L'ubica Holá^a, Ljubiša D.R. Kočinac^{b,*}

^a Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia
^b University of Niš, Faculty of Sciences and Mathematics, 18000 Niš, Serbia

ARTICLE INFO

Article history: Received 26 January 2018 Received in revised form 6 April 2018 Accepted 8 April 2018 Available online 10 April 2018

MSC: primary 54C35 secondary 46A04, 54D20, 54E15

Keywords: Function spaces ω -bounded (Strictly) M-bounded (Strictly) H-bounded R-bounded Pseudocompact Fréchet space

1. Introduction

We begin with some basic information about uniform and function spaces. Our topological notation and terminology are standard (see [5]). By \mathbb{N} and \mathbb{R} we denote the set of natural and real numbers, respectively.

1.1. Uniform spaces

Let X be a nonempty set. A family \mathbb{U} of subsets of $X \times X$ satisfying the conditions

(U1) each $U \in \mathbb{U}$ contains the diagonal $\Delta_X = \{(x, x) : x \in X\}$ of X; (U2) if $U, V \in \mathbb{U}$, then $U \cap V \in \mathbb{U}$;

* Corresponding author.

Topology Applications

ABSTRACT

We investigate several boundedness properties of function spaces considered as uniform spaces.

© 2018 Elsevier B.V. All rights reserved.

E-mail addresses: lubica.hola@mat.savba.sk (L. Holá), lkocinac@gmail.com (L.D.R. Kočinac).

- (U3) if $U \in \mathbb{U}$ and $V \supset U$, then $V \in \mathbb{U}$;
- (U4) for each $U \in \mathbb{U}$ there is $V \in \mathbb{U}$ with $V \circ V := \{(x, y) \in X \times X : \exists z \in V \text{ such that } (x, z) \in V, (z, y) \in V\} \subset U$;
- (U5) for each $U \in \mathbb{U}, U^{-1} := \{(x, y) \in X \times X : (y, x) \in U\} \in \mathbb{U}$

is called a *uniformity* on X.

Elements of the uniformity \mathbb{U} are called *entourages*. For any entourage $U \in \mathbb{U}$, a point $x \in X$ and a subset A of X one defines the set

$$U[x]:=\{y\in X: (x,y)\in U\}$$

called the U-ball with the center x, and the set

$$U[A] := \bigcup_{a \in A} U[a]$$

called the U-neighborhood of A.

In [11], several boundedness properties of uniform spaces were introduced and studied. We recall the definitions of those properties.

Definition 1.1. A uniform space (X, \mathbb{U}) is called:

- (1) totally bounded (resp. ω -bounded) if for each $U \in \mathbb{U}$ there is a finite (resp. countable) set $A \subset X$ such that X = U[A]. X is σ -totally bounded if it is a union of countably many totally bounded subspaces;
- (2) Menger bounded (or M-bounded for short) if for each sequence $(U_n : n \in \mathbb{N})$ of entourages there is a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of X such that $X = \bigcup_{n \in \mathbb{N}} U_n[F_n]$ [11,12];
- (3) Hurewicz bounded (or H-bounded for short) if for each sequence $(U_n : n \in \mathbb{N})$ of entourages there is a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of X such that each $x \in X$ belongs to all but finitely many $U_n[F_n]$ [11,12];
- (4) Rothberger bounded (or R-bounded for short) if for each sequence $(U_n : n \in \mathbb{N})$ of entourages there is a sequence $(x_n : n \in \mathbb{N})$ of elements of X such that $X = \bigcup_{n \in \mathbb{N}} U_n[x_n]$ [11,12].

To each of the above boundedness properties one can correspond a game on (X, \mathbb{U}) . For example, the game corresponded to M-boundedness is the following. Players ONE and TWO play a round for each $n \in \mathbb{N}$. In the *n*-th round ONE chooses an element $U_n \in \mathbb{U}$, and TWO responds by choosing a finite set $A_n \subset X$. TWO wins a play

$$U_1, A_1; U_2, A_2; \cdots; U_n, A_n; \cdots$$

if $X = \bigcup_{n \in \mathbb{N}} U_n[A_n]$; otherwise ONE wins.

A uniform space (X, \mathbb{U}) is said to be *strictly* M-bounded if TWO has a winning strategy in the above game ([11,12]).

In a similar way we define the games associated to H-boundedness and R-boundedness, and *strictly* H-bounded and *strictly* R-bounded uniform space.

1.2. Function spaces

Let X be a Tychonoff space, (Y, d) be a metric space and C(X, Y) be the set of continuous functions from X to Y. In case $Y = \mathbb{R}$ we write C(X) instead of $C(X, \mathbb{R})$. If $y \in (Y, d)$ and $\lambda > 0$, we put $S(y, \lambda) = \{z \in Y : d(y, z) < \lambda\}$ and $B(y, \lambda) = \{z \in Y : d(y, z) \le \lambda\}$. Download English Version:

https://daneshyari.com/en/article/8903998

Download Persian Version:

https://daneshyari.com/article/8903998

Daneshyari.com