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We establish that finite directed graphs give rise to semiflows on the power set of 
their nodes. We analyze the topological dynamics for semiflows on finite directed 
graphs by characterizing Morse decompositions, recurrence behavior and attractor–
repeller pairs under weaker assumptions. As is expected, the discrete metric plays 
an important role in our constructions and their consequences.
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1. Introduction

The mathematical theory of dynamical systems analyzes, from an axiomatic point of view, the common 
features of many models that describe the behavior of systems in time. In its abstract form, a dynamical 
system is given by a time set T (with semigroup operation ◦), a state space M , and a map Φ : T ×M → M

that satisfies (i) Φ(0, x) = x for all x ∈ M , describing the initial value, and (ii) Φ(t ◦ s, x) = Φ(t, Φ(s, x))
for all t, s ∈ T and x ∈ M . At the heart of the theory of dynamical systems is the study of systems 
behavior when t → ±∞ (qualitative behavior), as well the change in behavior under variation of parameters 
(bifurcation theory) [2,6–9].

In this work we consider dynamical systems on finite directed graphs without multiple edges. We analyze 
their communication structure, i.e., equivalence classes of vertices that can be reached mutually via sequences 
of edges. This leads to the set of communicating classes C of a graph and a reachability order � on C. The key 
concept is that of an L-graph corresponding to graphs for which each vertex has out-degree ≥ 1. As it turns 
out, these are exactly the graphs for which the ω-limit sets of the associated semiflow are nonempty. To each 
graph G = (V, E), where V is the set of vertices, P(V ) the power set of V , and E ⊂ V ×V the set of edges, we 
associate a semiflow ΦG : N ×P(V ) → P(V ). This semiflow is studied from the point of view of qualitative 
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behavior of dynamical systems. We adapt the concepts of ω-limit sets, (positive) invariance, recurrence, 
Morse decompositions, attractors and attractor–repeller pairs to ΦG and prove characterizations equivalent 
to those in [2]. As it turns out, the finest Morse decomposition of the semiflow ΦG corresponds to the 
decomposition of G into the communicating classes C. In addition, the order on the communicating classes 
is equivalent to the order that accompanies a Morse decomposition. Moreover, the connected components 
of the recurrent set of ΦG are exactly the (finest) Morse sets of ΦG, i.e., the communicating classes of G.

Graphs G = (V, E) are often studied using the adjacency matrix AG. The products of AG describe the 
paths, and hence the communication structure of G. We construct a semiflow ΨA : N × Qd → Qd (where 
Qd is the vertex set of the unit cube in Rd) that is equivalent to the semiflow ΦG defined on P(V ), using 
Boolean matrix multiplication. This point of view is somewhat different from the standard approach that 
uses regular matrix multiplication and that does not lead to an equivalent semiflow. The equivalence allows 
us to interpret all results obtained for ΦG in terms of certain linear iterated function systems.

2. Orbit decomposition of finite directed graphs

We start by presenting basic definitions and notations used along this work. Our first goal is to produce 
two simple graph decompositions motivated by concepts form dynamical systems. In contrast to the standard 
convention, throughout this work, the vertex communication is not in necessarily an equivalence relation. 
This simple observation will lead to interesting phenomena. We define communicating sets and classes, 
and a partial order between communicating classes is presented. We introduce a necessary condition to 
meaningfully study asymptotic behavior via the concept of orbit. Some of the results presented in this 
section are somehow elementary, we prefer to include such results for the sake of exposition.

Remark 2.1. Throughout this note whenever we refer to a graph G = (V, E) we mean a finite directed graph
when V is the set of vertices in G and E is the set of edges in G such that no multiple edges between any 
two elements in V are allowed.

2.1. Orbits and communicating classes

The communication structure in graphs is a central concept in this work. In this section we introduce 
the concepts of communicating sets and communicating classes based on the idea of orbits.

Let G be a graph. An edge from the vertex i to the vertex j is denoted (i, j) ∈ E. A path in G correspond 
to a sequence of vertices agree with the incidence and direction in G and is denoted by 〈i0i1 . . . in〉. Sometimes 
we write i ∈ γ to specify that the vertex i belongs to the path γ. We define the set:

Γn = {γ : �(γ) = n, n ∈ N} (2.1)

as the set of all paths γ of length �(γ) = n, with Γ0 = V . We can specify vertices in a path γ in terms of 
the projection maps πp for 0 ≤ p ≤ n:

πp : Γn → V , πp(γ) = ip

where ip is the pth vertex in γ. In other words,

γ = 〈π0(γ) . . . πp(γ) . . . πn(γ)〉.

A subpath γ′ of γ is a subsequence of γ of consecutive edges (or vertices) belonging to γ. In particular, 
any edge of a path is a subpath of length one. Composition of paths will play a role in many of our proofs.
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